Gradient-Based Biobjective Shape Optimization of Ceramic Components: Probabilty of Failure versus Cost

Onur Tanil Doganay,
Johanna Schultes, Camilla Hahn, Hanno Gottschalk, Kathrin Klamroth,
Michael Stiglmayr

Department of Mathematics and Informatics, University of Wuppertal, Wuppertal, Germany

GIVEN-Project

Shape optimization of gasturbines in volatile energy networks

- ► Collaboration with the University of Trier
- Project partners are:
 - Siemens AG
 - ► The German Aerospace Center (DLR)
 - Institute of Material Science at TU Kaiserslautern

SPONSORED BY THE

Check out the website: www.given-project.de

Outline

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

Plan

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

Problem

Problem:

- Ceramic component under tensile load
- Optimize its shape
 - ▶ improve reliability
 - minimize volume
- Instead of minimizing the peak stress consider the probability of failure

Mathematical Formulation in 2D

 $\Omega \subseteq \mathbb{R}^2$: domain with Lipschitz boundary $\partial \Omega$.

$$\partial \Omega = \overline{\partial \Omega}_D \cup \overline{\partial \Omega}_{N_{fixed}} \cup \overline{\partial \Omega}_{N_{free}}.$$

Forces may act on the object with the shape given by Ω .

▶ Volume force: $\bar{f} \in L^2(\Omega, \mathbb{R}^2)$

▶ Surface force: $\bar{g} \in L^2(\partial \Omega_N, \mathbb{R}^2)$.

Mathematical Formulation in 2D

▶ The linear elasticity equation must hold for Ω .

$$B(u,v) = L(v)$$
, $\forall v \in H_0^1(\Omega, \mathbb{R}^2)$,

where

$$B(u,v) = \int_{\Omega} \sigma(u) : \varepsilon(v) dx$$

$$= \lambda \int_{\Omega} \nabla \cdot u \nabla \cdot v dx + 2\mu \int_{\Omega} \varepsilon(u) : \varepsilon(v) dx$$

$$L(v) = \int_{\Omega} \bar{f} v dx + \int_{\partial \Omega_N} \bar{g} v dA$$

- ▶ Displacement $u \in H^1(\Omega, \mathbb{R}^2)$
- ► Stress tensor $\sigma(u) = \lambda \operatorname{tr}(\varepsilon(u)) I + \mu \left(\varepsilon(u) + \varepsilon(u)^{\top}\right)$, strain tensor $\varepsilon(v)$, Lamé's constants λ, μ

Plan

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

Modeling the Probability of Failure

- ► Risk of failure arises from flaws already in the material, due to the production process
- Under tensile load, these flaws may become the initial points of a rupture
- Objective function:

$$J(\Omega, Du) := \nu(A_c(\Omega, \nabla u)) = \frac{\Gamma(\frac{d}{2})}{2\pi^{\frac{d}{2}}} \int_{\Omega} \int_{S^{d-1}} \left(\frac{\sigma_n}{\sigma_0}\right)^m dn \, dx$$

Plan

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

Trade-Off Analysis: Probabilty of Failure versus Cost

```
min Probability of Failure (PoF)
min Volume (Cost)
```

s.t. State equation and boundary conditions hold

→ Biobjective optimization problem

Pareto Critical Point

Definition (Pareto Critical Point)

A necessary condition for a point $x \in \mathbb{R}^n$ to be locally Pareto optimal is

$$\{v \in \mathbb{R}^n \mid \nabla f_i(x)^\top v < 0, \ \forall \ i = 1, 2\} = \varnothing.$$

If x^* satisfies this condition we call it a Pareto critical point.

Plan

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

Multiobjective Descent Methods

- ► Fliege and Svaiter (2000): Steepest descent methods for multiobjective optimization
 - Désidéri (2009, 2012, 2014, ...):
 Multiple-gradient descent algorithm (MGDA)

Fliege and Svaiter, 2000

- ▶ Goal: Find a direction $v \in \mathbb{R}^n$ that is a descent direction for *all* objective functions, i.e., $\nabla f_i(x)^\top v < 0$, i = 1, 2
- ightharpoonup Computing a descent direction $v \in \mathbb{R}^n$:

$$\min \quad \alpha + \frac{1}{2} \|v\|^2$$
 s.t.
$$\nabla f_i(x)^\top v \le \alpha, \ i = 1, 2$$

► Step length: Armijo-like rule (componentwise)

Plan

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

2D Test Case

- ▶ Beryllium oxide (BeO) with Weibull modulus m = 5.
- ► Testobject:
 - ▶ Deformed rod with thickness 0.2m and length 1m
 - ► Implemented in R
 - ► Discretized by finite elements (41×7 grid)
 - Objective functions: probability of failure and volume
 - ► Boundaries: fix left, pull right
 - → expected solution: straight rod

Mesh-Morphing

- Approximation error depends on the mesh-quality
- Restrict movement: fix x coordinates
- ▶ Introduce a shape-parameter $\varrho = (\varrho^{ml}, \varrho^{th}) \in \mathbb{R}^{2\cdot 41}$
- ► Fit via B-splines for implicit smoothening of shapes

 → further reduction of variables

Plan

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

Shape Optimization

(a) Initial Shape

(b) One Optimized Shape

Shape Optimization (More Shapes)

Plan

Problem

Modeling the PoF

Trade-Off Analysis

Multiobjective Descent Methods

2D Test Case

Shape Optimization

- ► Implementation in Python
- Extension to 3D
- ► Adaptive mesh refinement
- Avoiding local minima

Comparison with Weighted Sum Approach

(a) B.O.-Descent

(b) Weighted Sum

	(a)	(b)
Iterations	109	133
Int. measure	.00093	.00092
Volume	.17855	.17850

GIVEN-Project

Shape optimization of gasturbines in volatile energy networks

- Collaboration with the University of Trier
- Project partners are:
 - Siemens AG
 - ▶ The German Aerospace Center (DLR)
 - ► Institute of Material Science at TU Kaiserslautern

SPONSORED BY THE

Check out the website: www.given-project.de