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Introduction

Our problem

• We have a MIP with two objectives
• A conversion to a single objective MIP can be solved in a reasonably short time
• We would like to present some (nondominated) solutions to the decision makers

Solution approach

• Find entire nondominated set?
• Too time consuming
• Only a couple of solutions would suffice anyway

• Find a discrete representation of the nondominated set
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Introduction

Agenda
Discrete representations:
• Some theoretical results for general biobjective problems
• A new scalarization/criterion space search method (when a single-objective
black-box solver is available)
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Introduction

Notation
Biobjective optimization problem:

min f1(x), f2(x)

s.t. x ∈ X

Other notation:
Y The set of feasible objective function values
N The nondominated set
y A point in Y
R A representation, i.e. a finite subset of N
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Introduction
Example of a representation
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The discrete representation problem

Measuring the quality of a representation

• d : N 7→ R is a given distance metric
• Coverage:

Γ(R) = max
y∈N

min
y′∈R

d(y, y′),

• Uniformity:
∆(R) = min

y,y′∈R,y 6=y′
d(y, y′),

The discrete representation problem (DRP)

min Γ(R)
max ∆(R)
min |R|
s.t. R ⊂ N, |R| <∞.
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Equidistant representations

Equidistant representations
Let

R = {y1, y2, . . . , y|R|} ⊂ N

such that yj
1 < yj+1

1 .

A representation R is equidistant if

d(yj , yj+1) = d(yj′
, yj′+1) = dR

for all 1 ≤ j, j′ ≤ |R| − 1.

A representation is complete if it contains the lexicographical minima.
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Equidistant representations

Critical points and critical distances
Critical points of a representation R

ȳj = argmax
y′∈N :yj

1≤y′
1≤yj+1

1

min
y∈R

d(y, y′)

Critical distances of a representation R

d̄j = max
y′∈N :yj

1≤y′
1≤yj+1

1

min
y∈R

d(y, y′),

Note that the coverage error can be restated in terms of critical distances as

Γ(R) = max
j∈{0,...,|R|}

d̄j .

Later in this talk. . .
A method for finding the critical points of a representation (note they are not part
of the representation itself)
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Equidistant representations

Critical points

Representation
Critical points
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Equidistant representations

Super- and sub-representations
The union of R and its critical points is its super-representation:

sup(R) = {ȳ0, y1, ȳ1, . . . , y|R|, ȳ|R|}

If |R| is odd, the sub-representation of R is

sub(R) = {y2, y4, . . . , y|R|−2},

Note that if R is a complete equidistant representation, then sup(sub(R)) = R.
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Equidistant representations

Lemma
A representation R for which sup(R) is a complete equidistant representation has
the minimum coverage error over all representations of cardinality |R|.

Lemma

If R is a complete equidistant representation, then R has the maximum uniformity
level over all representations of cardinality |R|.

Theorem

A representation R is a nondominated solution to the DRP if sup(R) is a complete
equidistant representation.

Corollary
If sup(R) is a complete equidistant representation

Γ(R) = dsup(R) = ∆(sup(R))
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Equidistant representations

Theorem

For any representation R of the nondominated set a biobjective optimization
problem,

Γ(R) ≥ ∆(sup(R))

and
∆(R) ≤ Γ(sub(R))
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Equidistant representations

Connected relaxation
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Equidistant representations

Proof

• Ñ : Connected relaxation of N

• For any connected nondominated set a complete equidistant representation exists
• Let R̃ be a complete equidistant representation of Ñ such that |R̃| = |R|.
• Since N ⊆ Ñ , it follows from previous Lemmas, that

Γ(R, N) ≥ Γ(R̃, Ñ) = dsup(R̃,Ñ) = ∆(sup(R̃, Ñ)) ≥ ∆(sup(R, N)).

• Similarly,
∆(R) ≤ ∆(R̃) = dR̃ = Γ(sub(R̃, Ñ)) ≤ Γ(sub(R)).
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• Since N ⊆ Ñ , it follows from previous Lemmas, that
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• Since N ⊆ Ñ , it follows from previous Lemmas, that
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• Since N ⊆ Ñ , it follows from previous Lemmas, that
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• Ñ : Connected relaxation of N

• For any connected nondominated set a complete equidistant representation exists
• Let R̃ be a complete equidistant representation of Ñ such that |R̃| = |R|.
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Equidistant representations
Main implication of these results
Given a representation R, no further information on N and a black-box solver:

• sup(R) (and thus the critical distances d̄j) can be computed by solving O(|R|)
single-objective problems (upcoming)

• The coverage error can then be calculated as

Γ(R) = max
j∈{0,...,|R|}

d̄j .

• An optimality gap for coverage can be obtained:

Γ(R)−∆(sup(R))
Γ(R)

• An optimality gap for uniformity can be obtained:

Γ(sub(R))−∆(R)
∆(R)
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The Voronoi cut method

Computing super-representations
Computing the critical point inbetween two consecutive points in the
representation:

Perpendicular bisector of
the connecting straight line

contains all equidistant points

One of these two points
is the critical point

Same idea behind the construction
of Voronoi diagrams:
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The Voronoi cut method
Voronoi cut method for finding representations
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The Voronoi cut method
Comparison with existing methods
Generating a representation R consisting of 5 points:

Weighted sum
HaPeRu2007(1)
HaPeRu2007(2)
EuFiEh2014(1)
EuFiEh2014(2)
SyCr2007/MaBu2008
Voronoi cut

0.71

0.00
BUFLP MILP 2DKP AP

For each method,
• upper line plots the coverage error of the sub-representation
• lower line plots the uniformity
18 DTU Management Engineering Equidistant representations 15/11/2018



The Voronoi cut method
Comparison with existing methods
Generating a representation R consisting of 9 points:

Weighted sum
HaPeRu2007(1)
HaPeRu2007(2)
EuFiEh2014(1)
EuFiEh2014(2)
SyCr2007/MaBu2008
Voronoi cut

0.66

0.00
BUFLP MILP 2DKP AP

For each method,
• upper line plots the coverage error of sub(R)
• lower line plots the uniformity of R
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The Voronoi cut method
Computation times

Avg time per CPLEX call
BUFLP MILP 2DKP AP

Weighted sum 0.06 0.05 0.94 1.28
HaPeRu2007(1) 0.20 0.27 1.25 2.43
HaPeRu2007(2) 0.19 0.24 1.18 2.18

n = 5 SyCr2007 0.23 0.26 1.96 59.20
MaBu2008 0.27 0.25 1.96 66.59

EuFiEh2014(1) 0.19 0.20 1.20 2.43
EuFiEh2014(2) 0.15 0.19 1.19 2.17
Voronoi Cut 0.40 0.19 1.71 4.02
Weighted sum 0.05 0.04 0.88 1.19
HaPeRu2007(1) 0.22 0.27 1.16 2.75
HaPeRu2007(2) 0.22 0.25 1.12 2.29

n = 9 SyCr2007 0.31 0.34 2.51 124.93
MaBu2008 0.34 0.32 2.70 88.93

EuFiEh2014(1) 0.23 0.24 1.12 2.79
EuFiEh2014(2) 0.19 0.21 1.13 2.24
Voronoi Cut 2.25 0.23 1.67 4.28
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The Voronoi cut method

Solver calls
Worst case # of calls Max # of calls

for Voronoi cut method n = 5 n = 9
n = 5 n = 9 BUFLP MILP 2DKP AP BUFLP MILP 2DKP AP

p = 1 4 + 6(n− 2) 22 46 18 20 22 22 40 42 44 44
p = 2 4 + 6(n− 2) 22 46 20 20 22 22 40 44 44 44
p =∞ 4 + 10(n− 2) 34 74 22 20 24 24 44 46 46 48

Weighted sum 7 11
Other methods 10 18
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The Voronoi cut method
Some final thoughts on gaps in the nondominated set
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Conclusion

Summary

• We present a dual relationship between coverage and uniformity that allows for
the calculation of optimality gaps

• We present a method for finding critical points of a representation, which can be
used to calculate coverage in absence of the full nondominated set

• This method can also be used to generate representations, and outperforms
existing scalarization/criterion space search methods

Looking forward
Can similar theoretical results be found for more than two objecties?
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Conclusion

Questions?
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