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I. Introduction



Nondominance and Weighted Sum

y∗ ∈ Y is nondominated, if 6 ∃ y ∈ Y
such that yi ≤ y∗i , ∀i and y 6= y∗. YN
is the set of nondominated images.

MOP SOP
Scalarization

Interpretation

Weighted Sum:
y∗ ∈ Y is supported, if ∃λ ∈ Rp

> such
that λT y∗ = miny∈Y λ

T y .
YSN set of supported images.
YESN set of extreme supported images.

minx∈X z(x) = Cx with Y = z(X ).
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The Weight Set Decomposition

Normalized Weight Set:

Λ :=

{
λ ∈ Rp

=
:

p∑
k=1

λk = 1

}
⊆ Rp−1,

Weight Set Component:

Λ(y∗) :=
{
λ ∈ Λ : λT y∗ = min

y∈Y
λT y
}
⊆ Λ.

minx∈X z(x) = Cx with Y = z(X ).
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Weight Set for Tri Objective Problems

1

1

0 λ1

λ2

Λ(y1)

Λ(y2)
Λ(y 3)

Λ(y4)

Weight set components are convex polytopes and the
components of the ESN images decompose the weight
set.
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Recent Work

2010 2016 2017 2018

Özpeynirci and Köksalan First
non-recursive exact algorithm for
more than three objectives.

Przybylski et al. First
exact algorithm for three
objectives, with recur-
sion usable for > 3 ob-
jectives. Alves and Costa Exact

algorithm for three objec-
tives.

Bökler and Mutzel First output sensitive exact
algorithm for finding ESN images for combinato-
rial problems.

Halffmann et al. Output sensitive graphical
exact algorithm for the weight set decomposition
using Dichotomic Search (in progress).
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II. Approximation of a Weight
Set Decomposition



Motivation

• Even though output sensitive, algorithms are not necessary
polynomial time algorithms.

• Also true, if the weighted sum problem can be solved in polynomial
time.

• Sometimes computing an exact weight set component is too time
consuming or simply not necessary.

What about approximation algorithms or heuristics?
This has not been done before!
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How to Approximate the Weight Set Decomposition?

Different Variants:

• Approximate the weight set decomposition as a whole.
• Approximate the weight set components.

Challenges:

• For a weight set component Λ(y) a set L(y) ⊆ Λ has to be returned
that meets certain requirements.

• An appropriate quality measure of the approximation L(y) of Λ(y).
• An approximation factor or bound and additional requirements.
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Quality Measures

Ratio of the Hypervolume

• V (L(y))
V (Λ(y)) .

• Easy to comprehend and visualize.
• Hard to compute, at least for the weight set component.

Hausdorff Distance

• δ(L(y),Λ(y)) := max{max{D(λ, L(y)), λ ∈ Λ}max{D(l ,Λ(y)), l ∈
L(y)}},
with D(f ,G) := min{d(f , g), g ∈ G} and d(., .) is the euclidean
metric.

• Use as measure 1− δ(L(y),Λ(y))
maxa,b∈Λ(y) d(a,b) .

• Easier to compute but harder to comprehend.
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Approximation of a Weight Set Component

Inner Approximation
L(y) is an inner approximation if L(y) ⊆ Λ(y). It is an inner
approximation component if L(y) is a convex polytope.

Outer Approximation
L(y) is an outer approximation if Λ(y) ⊆ L(y). It is an outer
approximation component if L(y) is a convex polytope.

Instead of L(y) and Λ(y), use L(y) and L(y), simplifies
the computation of the quality measure.
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Basic Definitions

Weight Set Decomposition Approximation Algorithm
Given an instance of a multiobjective problem, an α-Weight Set Decomposition
Approximation Algorithm with 0 < α ≤ 1 returns for a subset ∅ 6= S ⊆ YESN of
the extreme supported nondominated images sets L(y) ⊆ Λ, y ∈ S such that
each L(y) approximates Λ(y) by at least α. Further, the algorithm is a
polynomially α-Weight Set Decomposition Approximation Algorithm if it
additionally runs in polynomial time.

Weight Set Decomposition Approximation Heuristic
Each iteration i the algorithm returns a subset S i and an αi -approximation of
the weight set component of each y ∈ S i . We require that limi→∞ S i = YESN

and limi→∞ α
i = 1 and each iteration can be done in polynomial time.

Convergence Rate
Let ai (y) the approximation factor for Λ(y) in iteration i . We measure the
convergence rate for one component of the heuristic by

lim sup
i→∞

ai+1(y)
ai (y) .

10
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III. Approximation Algorithms
and Heuristics



Overview of the Methods

Point Search
Subdivide the weight set into easy computable
full-dimensional polytopes.
Evaluate the vertices:
If one solution is optimal for all vertices, then this
polytope belongs to the component of this
solution, otherwise subdivide again.

Line Search
Evaluate lines passing through the weight set by
Dichotomic Search. Take the convex hull of
breakpoints belonging to the same optimal
solution.

1

1

0 λ1

λ2

L(y)
L(y)

1

1

0 λ1

λ2

L(y)
L(y)
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Point Search: The Biobjective Case

0 1 λ1

L(y)

L(y)

Result
Given ε > 0 the Point Search gives an 1

3 -approximation (Hypervolume)
of all components that are found in O( 1εTWS). In order to definitely
return at least one weight set component, we require 1

ε > |YESN |.
This method has a convergence rate of 1

2 .

Due to the choice of ε this can be only used as an
heuristic.
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Point Search: The Multiobjective Case

Different Subdivisions:

1

1

0 λ1

λ2
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λ2

1
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λ2

Result
Given ε > 0 the Point Search gives
an ε-approximation (Hausdorff) of
all components that are found in
O( 1εTWS).

Hard to find an ε such that at least one component is
found.
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Point Search: Example
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Line Search

1

1

0 λ1

λ2

L(y)

L(y)

Result
Given ε > 0 the Line Search gives
an 1− ε-approximation (Hausdorff)
of all components that are found in
O( 1ε |YESN |TWS).

Not polynomial, hard to find an ε such that at least one
component is found. Same problem as for the Point
Search for dim Λ ≥ 2.
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IV. Open Question and Outlook



Open Question

Approximate Weight Set Component Problem
Let α > 0. Given an instance of a multiobjective problem where the
weighted sum problem is solvable in polynomial time. Can we, in terms
of our definition, approximate at least one weight set component by
factor α in polynomial time?

Conjecture: This problem is APX-hard, however proving this is hard by
itself, as it is a mixture of an optimization and a search problem.
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Outlook

• Progress on the approximation quality and convergence rate.

• Answer the general approximability of the weight set decomposition.
• What happens, if we use approximation algorithms to solve the
weighted sum problem?
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Thank you for your attention!
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