Can we approximate a weight set decomposition?

<u>Stefan Ruzika</u>*, Pascal Halffmann* RAMOO Workshop, 15th November 2018

* Technische Universität Kaiserslautern

These results have been acquired during the

vOpt Project

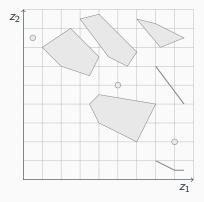
Exact Efficient Solution of Mixed-Integer Programming Problems with Multiple Objective Functions

```
https://vopt-anr-dfg.univ-nantes.fr/
```

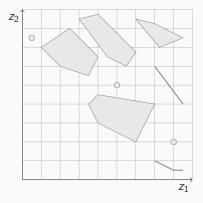

DFG grant RU 1524/4-1

I. Introduction

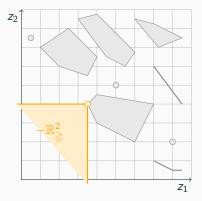
Nondominance and Weighted Sum



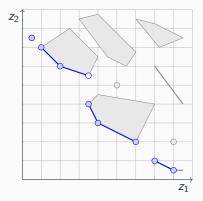
$$min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.



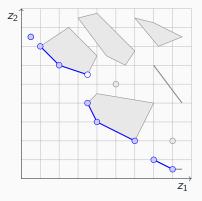
$$min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.



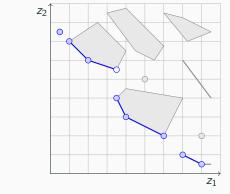
$$min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.



$$\min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.

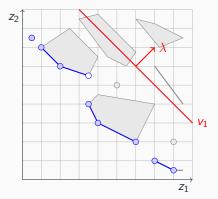


$$\min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.



Weighted Sum: $y^* \in Y$ is supported, if $\exists \lambda \in \mathbb{R}^p_{>}$ such that $\lambda^T y^* = \min_{y \in Y} \lambda^T y$. Y_{SN} set of supported images. Y_{ESN} set of extreme supported images.

$$\min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.



Scalarization MOP F.....SOP Interpretation

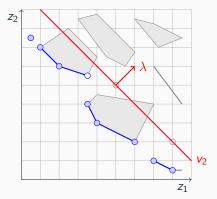
Weighted Sum: $y^* \in Y$ is supported, if $\exists \lambda \in \mathbb{R}^p_{>}$ such that $\lambda^T y^* = \min_{y \in Y} \lambda^T y$. Y_{SN} set of supported images. Y_{ESN} set of extreme supported images.

Scalarization

Interpretation

SOP

$$\min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.

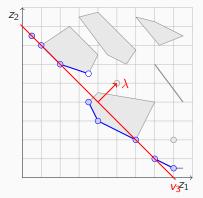


Weighted Sum:

MOP

$$\begin{split} y^* &\in Y \text{ is supported, if } \exists \lambda \in \mathbb{R}^p_> \text{ such } \\ \text{that } \lambda^T y^* &= \min_{y \in Y} \lambda^T y. \\ Y_{SN} \text{ set of supported images.} \\ Y_{ESN} \text{ set of extreme supported images.} \end{split}$$

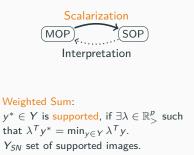
 $\min_{x \in X} z(x) = Cx$ with Y = z(X).



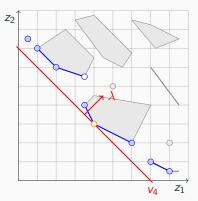
Scalarization (MOP) Interpretation

Weighted Sum: $y^* \in Y$ is supported, if $\exists \lambda \in \mathbb{R}^p_{>}$ such that $\lambda^T y^* = \min_{y \in Y} \lambda^T y$. Y_{SN} set of supported images. Y_{ESN} set of extreme supported images.

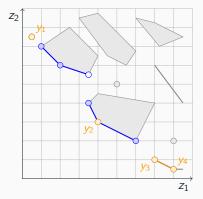
$$\min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.



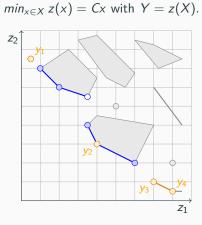
 Y_{ESN} set of extreme supported images.



 $\min_{x \in X} z(x) = Cx$ with Y = z(X).



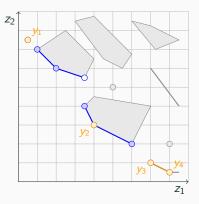
Weighted Sum: $y^* \in Y$ is supported, if $\exists \lambda \in \mathbb{R}^p_{>}$ such that $\lambda^T y^* = \min_{y \in Y} \lambda^T y$. Y_{SN} set of supported images. Y_{ESN} set of extreme supported images.



Normalized Weight Set:

$$\Lambda := \left\{ \lambda \in \mathbb{R}^{p}_{\geqq} : \sum_{k=1}^{p} \lambda_{k} = 1 \right\} \subseteq \mathbb{R}^{p-1},$$

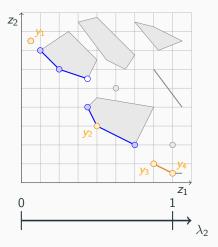
$$\min_{x \in X} z(x) = Cx$$
 with $Y = z(X)$.



Normalized Weight Set:

$$\Lambda := \left\{ \lambda \in \mathbb{R}^{p}_{\geqq} : \sum_{k=1}^{p} \lambda_{k} = 1 \right\} \subseteq \mathbb{R}^{p-1},$$

$$\min_{x \in X} z(x) = Cx$$
 with $Y = z(X)$.

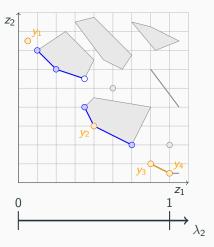


Normalized Weight Set:

$$\Lambda := \left\{ \lambda \in \mathbb{R}^p_{\geqq} : \sum_{k=1}^p \lambda_k = 1 \right\} \subseteq \mathbb{R}^{p-1},$$

$$\Lambda(y^*) := \left\{ \lambda \in \Lambda : \lambda^T y^* = \min_{y \in Y} \lambda^T y \right\} \subseteq \Lambda.$$

$$\min_{x\in X} z(x) = Cx$$
 with $Y = z(X)$.

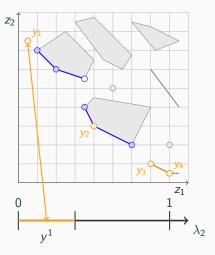


Normalized Weight Set:

$$\Lambda := \left\{ \lambda \in \mathbb{R}^p_{\geqq} : \sum_{k=1}^p \lambda_k = 1 \right\} \subseteq \mathbb{R}^{p-1},$$

$$\Lambda(y^*) := \left\{ \lambda \in \Lambda : \lambda^T y^* = \min_{y \in Y} \lambda^T y \right\} \subseteq \Lambda.$$

$$\min_{x \in X} z(x) = Cx$$
 with $Y = z(X)$.

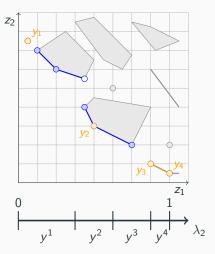


Normalized Weight Set:

$$\Lambda := \left\{ \lambda \in \mathbb{R}^p_{\geqq} : \sum_{k=1}^p \lambda_k = 1 \right\} \subseteq \mathbb{R}^{p-1},$$

$$\Lambda(y^*) := \left\{ \lambda \in \Lambda : \lambda^T y^* = \min_{y \in Y} \lambda^T y \right\} \subseteq \Lambda.$$

$$\min_{x \in X} z(x) = Cx$$
 with $Y = z(X)$.

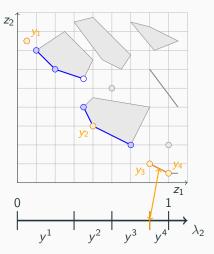


Normalized Weight Set:

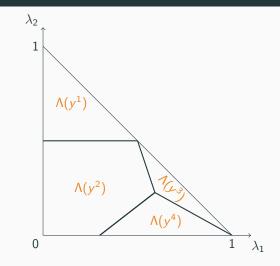
$$\Lambda := \left\{ \lambda \in \mathbb{R}^p_{\geqq} : \sum_{k=1}^p \lambda_k = 1 \right\} \subseteq \mathbb{R}^{p-1},$$

$$\Lambda(y^*) := \left\{ \lambda \in \Lambda : \lambda^T y^* = \min_{y \in Y} \lambda^T y \right\} \subseteq \Lambda.$$

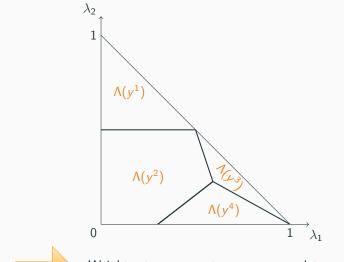
$$\min_{x \in X} z(x) = Cx$$
 with $Y = z(X)$.



Weight Set for Tri Objective Problems

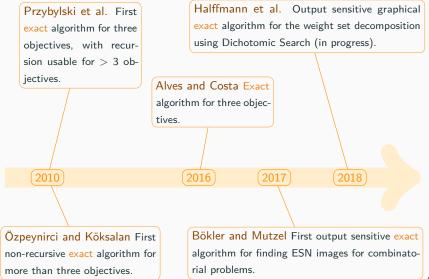


Weight Set for Tri Objective Problems



Weight set components are convex polytopes and the components of the ESN images decompose the weight

set.



II. Approximation of a Weight Set Decomposition

• Even though output sensitive, algorithms are not necessary polynomial time algorithms.

- Even though output sensitive, algorithms are not necessary polynomial time algorithms.
- Also true, if the weighted sum problem can be solved in polynomial time.

- Even though output sensitive, algorithms are not necessary polynomial time algorithms.
- Also true, if the weighted sum problem can be solved in polynomial time.
- Sometimes computing an exact weight set component is too time consuming or simply not necessary.

- Even though output sensitive, algorithms are not necessary polynomial time algorithms.
- Also true, if the weighted sum problem can be solved in polynomial time.
- Sometimes computing an exact weight set component is too time consuming or simply not necessary.

What about approximation algorithms or heuristics? This has not been done before!

• Approximate the weight set decomposition as a whole.

- Approximate the weight set decomposition as a whole.
- Approximate the weight set components.

- Approximate the weight set decomposition as a whole.
- Approximate the weight set components.

- Approximate the weight set decomposition as a whole.
- Approximate the weight set components.

Challenges:

- Approximate the weight set decomposition as a whole.
- Approximate the weight set components.

Challenges:

 For a weight set component Λ(y) a set L(y) ⊆ Λ has to be returned that meets certain requirements.

Different Variants:

- Approximate the weight set decomposition as a whole.
- Approximate the weight set components.

Challenges:

- For a weight set component Λ(y) a set L(y) ⊆ Λ has to be returned that meets certain requirements.
- An appropriate quality measure of the approximation L(y) of $\Lambda(y)$.

Different Variants:

- Approximate the weight set decomposition as a whole.
- Approximate the weight set components.

Challenges:

- For a weight set component Λ(y) a set L(y) ⊆ Λ has to be returned that meets certain requirements.
- An appropriate quality measure of the approximation L(y) of $\Lambda(y)$.
- An approximation factor or bound and additional requirements.

Ratio of the Hypervolume

Ratio of the Hypervolume

- $\frac{V(L(y))}{V(\Lambda(y))}$.
- Easy to comprehend and visualize.
- Hard to compute, at least for the weight set component.

Ratio of the Hypervolume

- $\frac{V(L(y))}{V(\Lambda(y))}$.
- Easy to comprehend and visualize.
- Hard to compute, at least for the weight set component.

Hausdorff Distance

Ratio of the Hypervolume

- $\frac{V(L(y))}{V(\Lambda(y))}$.
- Easy to comprehend and visualize.
- Hard to compute, at least for the weight set component.

Hausdorff Distance

- δ(L(y), Λ(y)) := max{max{D(λ, L(y)), λ ∈ Λ} max{D(I, Λ(y)), I ∈ L(y)},
 with D(f, G) := min{d(f, g), g ∈ G} and d(.,.) is the euclidean metric.
- Use as measure $1 \frac{\delta(L(y), \Lambda(y))}{\max_{a,b \in \Lambda(y)} d(a,b)}$.
- Easier to compute but harder to comprehend.

Inner Approximation

 $\underline{L}(y)$ is an inner approximation if $\underline{L}(y) \subseteq \Lambda(y)$. It is an inner approximation component if $\underline{L}(y)$ is a convex polytope.

Inner Approximation

 $\underline{L}(y)$ is an inner approximation if $\underline{L}(y) \subseteq \Lambda(y)$. It is an inner approximation component if $\underline{L}(y)$ is a convex polytope.

Outer Approximation

 $\overline{L}(y)$ is an outer approximation if $\Lambda(y) \subseteq \overline{L}(y)$. It is an outer approximation component if $\overline{L}(y)$ is a convex polytope.

Inner Approximation

 $\underline{L}(y)$ is an inner approximation if $\underline{L}(y) \subseteq \Lambda(y)$. It is an inner approximation component if $\underline{L}(y)$ is a convex polytope.

Outer Approximation

 $\overline{L}(y)$ is an outer approximation if $\Lambda(y) \subseteq \overline{L}(y)$. It is an outer approximation component if $\overline{L}(y)$ is a convex polytope.

Instead of L(y) and $\Lambda(y)$, use $\underline{L}(y)$ and $\overline{L}(y)$, simplifies the computation of the quality measure.

Basic Definitions

Weight Set Decomposition Approximation Algorithm

Given an instance of a multiobjective problem, an α -Weight Set Decomposition Approximation Algorithm with $0 < \alpha \le 1$ returns for a subset $\emptyset \ne S \subseteq Y_{ESN}$ of the extreme supported nondominated images sets $L(y) \subseteq \Lambda, y \in S$ such that each L(y) approximates $\Lambda(y)$ by at least α . Further, the algorithm is a polynomially α -Weight Set Decomposition Approximation Algorithm if it additionally runs in polynomial time.

Basic Definitions

Weight Set Decomposition Approximation Algorithm

Given an instance of a multiobjective problem, an α -Weight Set Decomposition Approximation Algorithm with $0 < \alpha \le 1$ returns for a subset $\emptyset \ne S \subseteq Y_{ESN}$ of the extreme supported nondominated images sets $L(y) \subseteq \Lambda, y \in S$ such that each L(y) approximates $\Lambda(y)$ by at least α . Further, the algorithm is a polynomially α -Weight Set Decomposition Approximation Algorithm if it additionally runs in polynomial time.

Weight Set Decomposition Approximation Heuristic

Each iteration *i* the algorithm returns a subset S^i and an α^i -approximation of the weight set component of each $y \in S^i$. We require that $\lim_{i\to\infty} S^i = Y_{ESN}$ and $\lim_{i\to\infty} \alpha^i = 1$ and each iteration can be done in polynomial time.

Basic Definitions

Weight Set Decomposition Approximation Algorithm

Given an instance of a multiobjective problem, an α -Weight Set Decomposition Approximation Algorithm with $0 < \alpha \le 1$ returns for a subset $\emptyset \ne S \subseteq Y_{ESN}$ of the extreme supported nondominated images sets $L(y) \subseteq \Lambda, y \in S$ such that each L(y) approximates $\Lambda(y)$ by at least α . Further, the algorithm is a polynomially α -Weight Set Decomposition Approximation Algorithm if it additionally runs in polynomial time.

Weight Set Decomposition Approximation Heuristic

Each iteration *i* the algorithm returns a subset S^i and an α^i -approximation of the weight set component of each $y \in S^i$. We require that $\lim_{i\to\infty} S^i = Y_{ESN}$ and $\lim_{i\to\infty} \alpha^i = 1$ and each iteration can be done in polynomial time.

Convergence Rate

Let $a^i(y)$ the approximation factor for $\Lambda(y)$ in iteration *i*. We measure the convergence rate for one component of the heuristic by

$$\limsup_{i\to\infty}\frac{a^{i+1}(y)}{a^i(y)}.$$

III. Approximation Algorithms and Heuristics

Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

If one solution is optimal for all vertices, then this

polytope belongs to the component of this

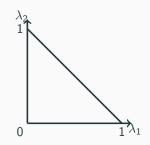
solution, otherwise subdivide again.

Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

If one solution is optimal for all vertices, then this polytope belongs to the component of this

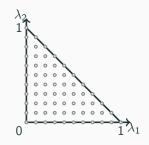
solution, otherwise subdivide again.



Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

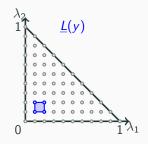
If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.



Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

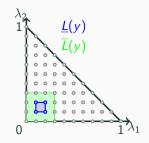
If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.



Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

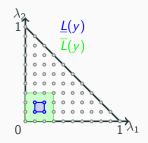
If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.



Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.



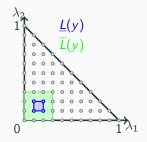
Line Search

Point Search

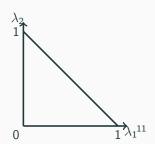
Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.



Line Search

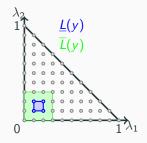


Point Search

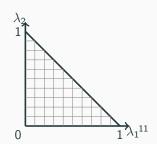
Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.



Line Search

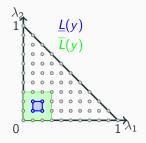


Point Search

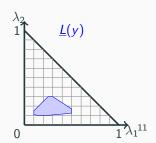
Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.



Line Search

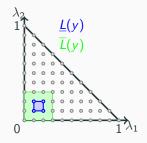


Point Search

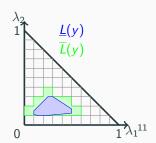
Subdivide the weight set into easy computable full-dimensional polytopes.

Evaluate the vertices:

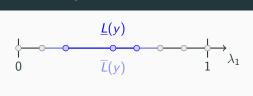
If one solution is optimal for all vertices, then this polytope belongs to the component of this solution, otherwise subdivide again.

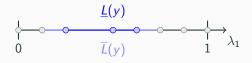


Line Search



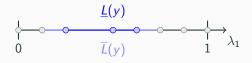






Result

Given $\epsilon > 0$ the Point Search gives an $\frac{1}{3}$ -approximation (Hypervolume) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}T_{WS})$. In order to definitely return at least one weight set component, we require $\frac{1}{\epsilon} > |Y_{ESN}|$. This method has a convergence rate of $\frac{1}{2}$.

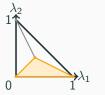


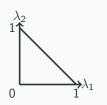
Result

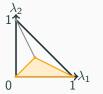
Given $\epsilon > 0$ the Point Search gives an $\frac{1}{3}$ -approximation (Hypervolume) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}T_{WS})$. In order to definitely return at least one weight set component, we require $\frac{1}{\epsilon} > |Y_{ESN}|$. This method has a convergence rate of $\frac{1}{2}$.

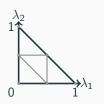
Due to the choice of ϵ this can be only used as an heuristic.

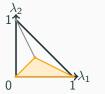
Different Subdivisions:

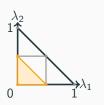


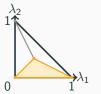


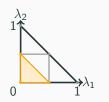


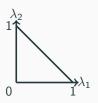


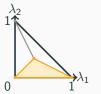


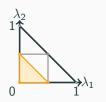


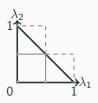


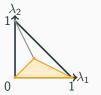


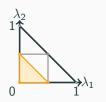






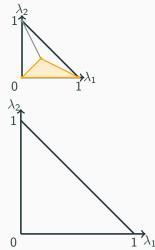


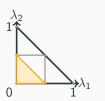




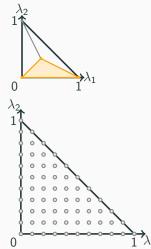


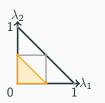
Different Subdivisions:

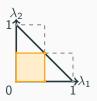


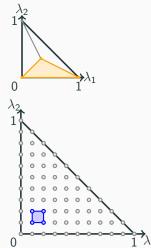


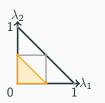
Different Subdivisions:

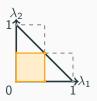


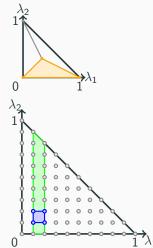


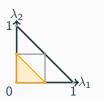


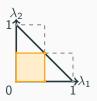






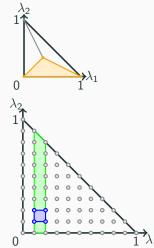






0

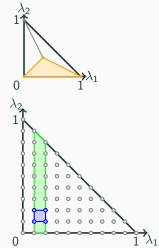
Different Subdivisions:

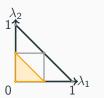


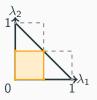
Result

Given $\epsilon > 0$ the Point Search gives an ϵ -approximation (Hausdorff) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}T_{WS})$.

Different Subdivisions:







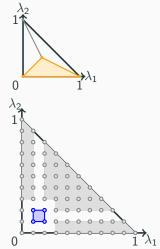
Result

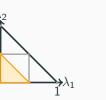
Given $\epsilon > 0$ the Point Search gives an ϵ -approximation (Hausdorff) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}T_{WS})$.

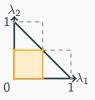
Hard to find an ϵ such that at least one component is found.

0

Different Subdivisions:





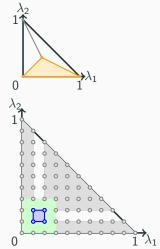


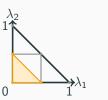
Result

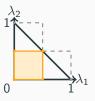
Given $\epsilon > 0$ the Point Search gives an ϵ -approximation (Hausdorff) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}T_{WS})$.

Hard to find an ϵ such that at least one component is found.

Different Subdivisions:







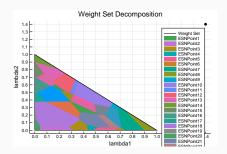
Result

Given $\epsilon > 0$ the Point Search gives an ϵ -approximation (Hausdorff) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}T_{WS})$.

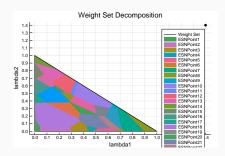
Hard to find an ϵ such that at least one component is found.

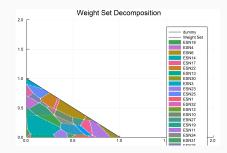
Assignment Problem with 10 items:

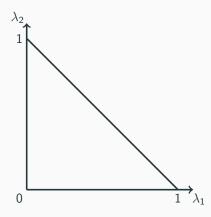
Assignment Problem with 10 items:

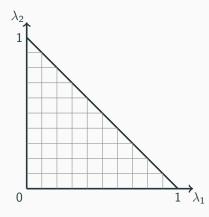


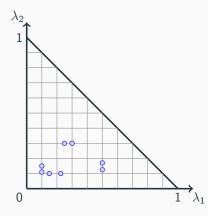
Assignment Problem with 10 items:

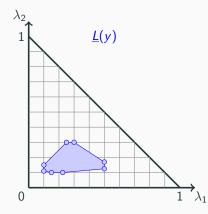


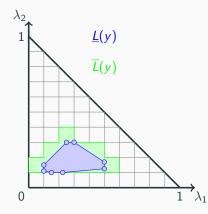


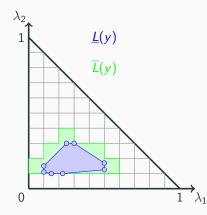






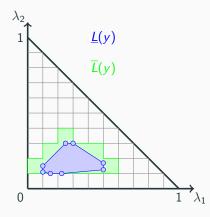






Result

Given $\epsilon > 0$ the Line Search gives an $1 - \epsilon$ -approximation (Hausdorff) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}|Y_{ESN}|T_{WS}).$



Result

Given $\epsilon > 0$ the Line Search gives an $1 - \epsilon$ -approximation (Hausdorff) of all components that are found in $\mathcal{O}(\frac{1}{\epsilon}|Y_{ESN}|T_{WS}).$

Not polynomial, hard to find an ϵ such that at least one component is found. Same problem as for the Point Search for dim $\Lambda \geq 2.$

IV. Open Question and Outlook

Approximate Weight Set Component Problem

Let $\alpha > 0$. Given an instance of a multiobjective problem where the weighted sum problem is solvable in polynomial time. Can we, in terms of our definition, approximate at least one weight set component by factor α in polynomial time?

Approximate Weight Set Component Problem

Let $\alpha > 0$. Given an instance of a multiobjective problem where the weighted sum problem is solvable in polynomial time. Can we, in terms of our definition, approximate at least one weight set component by factor α in polynomial time?

Conjecture: This problem is *APX-hard*, however proving this is hard by itself, as it is a mixture of an optimization and a search problem.

• Progress on the approximation quality and convergence rate.

- Progress on the approximation quality and convergence rate.
- Answer the general approximability of the weight set decomposition.

- Progress on the approximation quality and convergence rate.
- Answer the general approximability of the weight set decomposition.
- What happens, if we use approximation algorithms to solve the weighted sum problem?

Thank you for your attention!

References

Maria J. Alves and João P. Costa. "Graphical exploration of the weight space in three-objective mixed integer linear programs". In: *European Journal of Operational Research* 248.1 (2016), pp. 72–83. URL:

http://www.sciencedirect.com/science/article/pii/S0377221715006268

Fritz Bökler and Petra Mutzel. "Output-Sensitive Algorithms for Enumerating the Extreme Nondominated Points of Multiobjective Combinatorial Optimization Problems". In: *Algorithms - ESA 2015: 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings.* Ed. by Nikhil Bansal and Irene Finocchi. Springer

Berlin Heidelberg, 2015, pp. 288–299. URL:

http://dx.doi.org/10.1007/978-3-662-48350-3_25

Matthias Ehrgott. Multicriteria optimization. Springer Science & Business Media, 2005

Özgür Özpeynirci and Murat Köksalan. "An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs". In: *Management Science* 56.12 (2010), pp. 2302–2315. URL: http://dx.doi.org/10.1287/mnsc.1100.1248

Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme". In: *INFORMS Journal on Computing* 22.3 (2010), pp. 371–386. URL: http://dx.doi.org/10.1287/ijoc.1090.0342