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The problem

We want to compute all optimal solutions to the problem

max C1x

max C2x
s.t.: x ∈ X

where X ⊆ {0,1}n.
“compute all optimal solutions” ∼ generate all solutions in XE

Develop a decision space-based algorithm
Use the the machinery lying around from single objective optimization.

Sune L. Gadegaard Generating XE 2018 RAMOO Nantes 2 / 18



Motivation

Most effort is on generating a minimal complete set of efficient solutions.
Often, an optimal solution is not really “optimal” for a decision maker

I The outcome might not be as important as the solution itself (as long as it is a “good”
solution).

I Some “hidden” utility function must be optimized over the set of XE
I Alternative optimal solutions tell about the problem and its structure

Some special functions attain their optimum over the efficient set of multi-objective
combinatorial optimization problem.
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Bi-objective branch and bound

A B&B algorithm for bi–objective optimization can be outlined as follows
Initialization: Initialize a stack, T , of branching nodes with a root node and initialize a

lower bound set, L, consisting of feasible tuples {x , z}
Node selection: Pick a node, η ∈ T , from the stack of branching nodes
Upper bound set: Generate an upper bound set, Uη, of all efficient solutions contained in

η

Lower bound set: Update the lower bound set, L, if new yet non-dominated solutions
have been found

Pruning: If Uη � L, no non–dominated solutions exists in subsequent nodes.
Go to Node selection.

Varaible selction: Pick a variable xi to branch on.
Set η0 = η ∩ {xi = 0}, η1 = η ∩ {xi = 1}, T = (T ∪ η0 ∪ η1) \ η.
Go to Node selection
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Two new attempts – Upper bound set

At each branching node, compute bi-objective LP
relaxation

→ Add cuts

S.L Gadegaard, L.R.Nielsen and M. Ehrgott
Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets
To appear in INFORMS Journal on Computing (Accepted 2018)
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Two new attempts – Lower bound set

At each branching node, compute extreme
supported IP solutions

→ Much stronger bound, but harder to compute

S.N Parragh and F. Tricoire
Branch-and-bound for bi-objective integer programming
optimization-online.org (2015)
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Two new attempts – Branching

Branch on a variable that separates the current
node

I Branch on one of the extreme points of the
bi-objective LP relaxation

I Branch on variable with fractional average value
of IP extreme supported solutions.

I Branch in objective space
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What seems to work best?

Branching in objective space
I Cuts out a large part of the feasible space
I Can be implemented without removing equivalent solutions

Upper bound set from IP is much stronger
I Much better pruning potential
I Time consuming if no good algorithm is known

Objective space cuts ruin structure!
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What I want to do

Utilize problem specific solvers as much as possible

I Weighted sum scalarizations
I No complicating constraints
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
For the linear assignment problem: If xij = 1 remove job i and agent j and add c1

ij and
c2

ij to objectives. If xij = 0 set cij =∞
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
For the 0-1 knapsack problem: If xi = 1 remove item i , reduce capacity by wi , and
add p1

i and p2
i to objectives. If xi = 0, remove item i
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
For facility location: If yi = 1 add f 1

i and f 2
i to the objective functions and set

f 1
i = f 2

i = 0. If yi = 0 set fi =∞
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
→We can use customized solvers, if we branch on single variables
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Some trivial observations

For any efficient solution, x̃ , to

max C1x

max C2x
s.t.: x ∈ X

there exists a 0 < λ < 1, I ⊆ {1, . . . ,n}, and τ ∈ {0,1}I such that

x̃ ∈ arg max{(λC1 + (1− λ)C2)x : x ∈ X , xi = τi ∀i ∈ I}
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Basic algorithm design

Initialization: Initialize a stack, T , of branching nodes with a root node and initialize a
lower bound set, L, consisting of feasible tuples {x , z}

Node selection: Pick a node, η ∈ T , from the stack of branching nodes
Upper bound set: Generate a solution for each (extreme) supported non-dominated

outcome of η, say {x1, . . . , xk}. Set Uη =
(
conv({x1, . . . , xk})

)
N

Lower bound set: Add {x1, . . . , xk} to L and filter for dominated solutions
Pruning: If Uη � L, no non–dominated solutions exists in subsequent nodes.

Go to Node selection.
Varaible selction: Pick a variable xi to branch on.

Set η0 = η ∩ {xi = 0}, η1 = η ∩ {xi = 1}, T = (T ∪ η0 ∪ η1) \ η.
Go to Node selection
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(Very) Preliminary results - Assignment problem
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68,602 LPs 89,714 LPs
5063 Nodes 7221 Nodes
325 seconds 408 seconds

0.06 seconds per node 0.05 seconds per node
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(Very) Preliminary results – Knapsack
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75,489 IPs — IPs
5940 Nodes 28,031 Nodes
274 seconds 1,298 seconds

0.05 seconds per node 0.04 seconds per node
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(Very) Preliminary results – Knapsack
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Variable selection

For the node η to be separated, we must have x̄i := 1
k
∑k

l=1 x l
i ∈ (0,1)

Many branching strategies could be used: most fractional, random, adapted versions
of strong/pseudo cost/reliability branching.
Must balance the effort of recomputing lower bound sets, selecting variables, impact
on lower bound set a.s.o..
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Variable selection – an example

x1 x2 x3 x4 x5 x6

Solution 1 1 1 1 0 0 1
Solution 2 1 0 1 0 1 1
Solution 3 0 0 1 1 0 1
Solution 4 1 1 0 0 0 1
Solution 5 1 0 0 1 0 1
Solution 6 0 1 0 1 0 0
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What happens if we branch on variable x1?
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Variable selection – an example

x1 x2 x3 x4 x5 x6

Solution 1 1 1 1 0 0 1
Solution 2 1 0 1 0 1 1
Solution 3 0 0 1 1 0 1
Solution 4 1 1 0 0 0 1
Solution 5 1 0 0 1 0 1
Solution 6 0 1 0 1 0 0

What happens if we branch on variable x3?

Sune L. Gadegaard Generating XE 2018 RAMOO Nantes 16 / 18



Lagrangean relaxation of no goods

Given a feasible solution x̄ a valid inequality is
∑

i:x̄i =0 xi +
∑

i:x̄i =1(1− xi) ≥ 1
For a given λ ∈ (0,1) let µ(λ) be an optimal dual multiplier to

min
µ

max (λC1 + (1− λ)C2)x + µ(
∑

i:x̄i =0

xi +
∑

i:x̄i =1

(1− xi)− 1)

s.t.: x ∈ X
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Questions?
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