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The problem

@ We want to compute all optimal solutions to the problem

max C'x

max C2x
stoxe X

where X C {0,1}".
@ “‘compute all optimal solutions” ~ generate all solutions in Xg
@ Develop a decision space-based algorithm
@ Use the the machinery lying around from single objective optimization.
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Motivation

@ Most effort is on generating a minimal complete set of efficient solutions.
@ Often, an optimal solution is not really “optimal” for a decision maker
» The outcome might not be as important as the solution itself (as long as it is a “good”
solution).
» Some “hidden” utility function must be optimized over the set of X¢
» Alternative optimal solutions tell about the problem and its structure
@ Some special functions attain their optimum over the efficient set of multi-objective
combinatorial optimization problem.
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Bi-objective branch and bound

A B&B algorithm for bi—objective optimization can be outlined as follows

Initialization: Initialize a stack, T, of branching nodes with a root node and initialize a
lower bound set, L, consisting of feasible tuples {x, z}

Node selection: Pick a node, n € T, from the stack of branching nodes

Upper bound set: Generate an upper bound set, U, of all efficient solutions contained in
n

Lower bound set: Update the lower bound set, L, if new yet non-dominated solutions
have been found

Pruning: If U, = L, no non—dominated solutions exists in subsequent nodes.
Go to Node selection.
Varaible selction: Pick a variable x; to branch on.

Setng=nN{x;=0},n1=nn{x;=1} T =(TUnoUn)\n.
Go to Node selection
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Two new attempts — Upper bound set

@ At each branching node, compute bi-objective LP
relaxation

@ S.L Gadegaard, L.R.Nielsen and M. Ehrgott

Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets
To appear in INFORMS Journal on Computing (Accepted 2018)
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Two new attempts — Upper bound set

@ At each branching node, compute bi-objective LP
relaxation
— Add cuts *

@ S.L Gadegaard, L.R.Nielsen and M. Ehrgott

Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets
To appear in INFORMS Journal on Computing (Accepted 2018)
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Two new attempts — Lower bound set

@ At each branching node, compute extreme
supported IP solutions °

@ S.N Parragh and F. Tricoire

Branch-and-bound for bi-objective integer programming
optimization-online.org (2015)
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Two new attempts — Lower bound set

@ At each branching node, compute extreme
supported IP solutions °
— Much stronger bound, but harder to compute ¢

ﬁ S.N Parragh and F. Tricoire

Branch-and-bound for bi-objective integer programming
optimization-online.org (2015)
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Two new attempts — Branching

@ Branch on a variable that separates the current
node
» Branch on one of the extreme points of the
bi-objective LP relaxation
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Two new attempts — Branching

@ Branch on a variable that separates the current
node

» Branch on one of the extreme points of the
bi-objective LP relaxation

» Branch on variable with fractional average value
of IP extreme supported solutions.

» Branch in objective space
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What seems to work best?

@ Branching in objective space

» Cuts out a large part of the feasible space
» Can be implemented without removing equivalent solutions
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What seems to work best?

@ Branching in objective space

» Cuts out a large part of the feasible space
» Can be implemented without removing equivalent solutions

@ Upper bound set from IP is much stronger

» Much better pruning potential
» Time consuming if no good algorithm is known

@ Objective space cuts ruin structure!
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What | want to do

@ Utilize problem specific solvers as much as possible
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What | want to do

@ Utilize problem specific solvers as much as possible

» Weighted sum scalarizations
» No complicating constraints
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
@ For the linear assignment problem: If x; = 1 remove job / and agent j and add c,} and
c; to objectives. If x; = 0 set ¢j = oo
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem

@ For the 0-1 knapsack problem: If x; = 1 remove item i, reduce capacity by w;, and
add p! and p? to objectives. If x; = 0, remove item i
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Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem

e For facility location: If y; = 1 add f! and f? to the objective functions and set
fl=f=0.1fy;=0setf=oc0

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 10/18



Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
@ — We can use customized solvers, if we branch on single variables
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Some trivial observations

For any efficient solution, X, to

max C'x

max C2x
st.xe X

there existsa0 < A< 1,ZC {1,...,n}, and 7 € {0,1}* such that

X € argmax{(\C"+ (1 = \)C?®)x : xe X,x; =7 VieT}
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Basic algorithm design

Initialization: Initialize a stack, T, of branching nodes with a root node and initialize a
lower bound set, L, consisting of feasible tuples {x, z}

Node selection: Pick a node, n € T, from the stack of branching nodes

Upper bound set: Generate a solution for each (extreme) supported non-dominated
outcome of 1, say {x',...,x¥}. Set U, = (conv({x,...,xk})),

Lower bound set: Add {x',...,xX} to L and filter for dominated solutions

Pruning: If U, =< L, no non—dominated solutions exists in subsequent nodes.

Go to Node selection.

Varaible selction: Pick a variable x; to branch on.
Setng =nN{xi=0}nm=nN{xi=1}L T=(TUnUm)\n.
Go to Node selection
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(Very) Preliminary results

Assignment problem
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(Very) Preliminary results — Knapsack

Front size (depth first)
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(Very) Preliminary results — Knapsack
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Variable selection

@ For the node 7 to be separated, we must have X; := %ZL x! € (0,1)
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Variable selection

@ For the node 7 to be separated, we must have X; := %ZL x! € (0,1)

@ Many branching strategies could be used: most fractional, random, adapted versions
of strong/pseudo cost/reliability branching.
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Variable selection

@ For the node 7 to be separated, we must have X; := %ZL x! € (0,1)

@ Many branching strategies could be used: most fractional, random, adapted versions
of strong/pseudo cost/reliability branching.

@ Must balance the effort of recomputing lower bound sets, selecting variables, impact
on lower bound set a.s.o..
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Variable selection — an example

X1 Xo X3 X4 X5 Xp °

Solutont 1 1 1 0 0 1

Soluton2 1 0 1 0 1 A1 .
Soluton3 0 0 1 1 0 1

Soluton4 1 1 0 0 0 1 °
Soluton5 1 0 0 1 0 1

Soluton6 0 1 0 1 0 O

[ ]
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Variable selection — an example

X1 Xo X3 X4 X5 Xp °

Solutont 1 1 1 0 0 1

Soluton2 1 0 1 0 1 1 .
Soluton3 0 0 1 1 0 1

Soluton4 1 1 0 0 O 1 °
Soluton5 1 0 0 1 0 1

Soluton6 0 1 0 1 0 O

[ ]

What happens if we branch on variable x;?
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Variable selection — an example

Xq Xo X3 X4 X5 Xg o
Solutont 1 1 1 0 0 1
Soluton2 1 0 1 0 1 1 .
Soluton3 0 0 1 1 0 1
Soluton4 1 1 0 0 O 1 °
Soluton5 1 0 0 1 0 1 Xy =1
Soluton6 0 1 0 1 0 O

O

What happens if we branch on variable x;?
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Variable selection — an example

Xq Xo X3 X4 X5 Xg °
Solutont 1 1 1 0 0 1
Soluton2 1 0 1 0 1 1 °
Soluton3 0 0 1 1 0 1
Soluton4 1 1 0 0 O 1 o
Soluton5 1 0 0 1 0 1 x; =0
Soluton6 0 1 0 1 0 O

[ ]

What happens if we branch on variable x;?
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Variable selection — an example

X1 Xo X3 X4 X5 Xp °

Solutont 1 1 1 0 0 1

Soluton2 1 0 1 0 1 1 °
Soluton3 0 0 1 1 0 1

Soluton4 1 1 0 0 O 1 o
Soluton5 1 0 0 1 0 1

Soluton6 0 1 0 1 0 O

O

What happens if we branch on variable x3?
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Lagrangean relaxation of no goods

@ Given a feasible solution x a valid inequality is ;5 o Xi + > _j5_1(1 — X)) > 1
@ Foragiven A € (0,1) let u()\) be an optimal dual multiplier to

mJn max (AC' + (1 = X\)C?)x + u( Z Xj + Z (1—x)—1)

i:x;=0 ix;=1

st.xe X
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Questions?




