Finding all efficient solutions to a bi-objective combinatorial optimization problem

S.L. Gadegaard

Aarhus University Denmark

2018 RAMOO Nantes

The problem

• We want to compute all optimal solutions to the problem

 $\begin{array}{l} \max \ C^1 x \\ \max \ C^2 x \\ \text{s.t.: } x \in \mathcal{X} \end{array}$

where $\mathcal{X} \subseteq \{0,1\}^n$.

- "compute all optimal solutions" \sim generate all solutions in \mathcal{X}_E
- Develop a decision space-based algorithm
- Use the the machinery lying around from single objective optimization.

Motivation

- Most effort is on generating a minimal complete set of efficient solutions.
- Often, an optimal solution is not really "optimal" for a decision maker
 - The outcome might not be as important as the solution itself (as long as it is a "good" solution).
 - Some "hidden" utility function must be optimized over the set of \mathcal{X}_E
 - Alternative optimal solutions tell about the problem and its structure
- Some special functions attain their optimum over the efficient set of multi-objective combinatorial optimization problem.

Bi-objective branch and bound

A B&B algorithm for bi–objective optimization can be outlined as follows Initialization: Initialize a stack, T, of branching nodes with a root node and initialize a lower bound set, L, consisting of feasible tuples $\{x, z\}$

Node selection: Pick a node, $\eta \in T$, from the stack of branching nodes

Upper bound set: Generate an upper bound set, U_{η} , of all efficient solutions contained in η

Lower bound set: Update the lower bound set, *L*, if new yet non-dominated solutions have been found

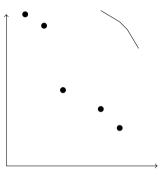
Pruning: If $U_{\eta} \leq L$, no non-dominated solutions exists in subsequent nodes. Go to Node selection.

Varaible selction: Pick a variable x_i to branch on.

Set $\eta_0 = \eta \cap \{x_i = 0\}$, $\eta_1 = \eta \cap \{x_i = 1\}$, $T = (T \cup \eta_0 \cup \eta_1) \setminus \eta$. Go to Node selection

Two new attempts – Upper bound set

At each branching node, compute bi-objective LP relaxation

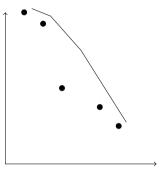


S.L Gadegaard, L.R.Nielsen and M. Ehrgott

Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets To appear in *INFORMS Journal on Computing* (Accepted 2018) Two new attempts – Upper bound set

At each branching node, compute bi-objective LP relaxation

 \rightarrow Add cuts

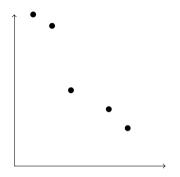


S.L Gadegaard, L.R.Nielsen and M. Ehrgott

Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets To appear in *INFORMS Journal on Computing* (Accepted 2018)

Two new attempts – Lower bound set

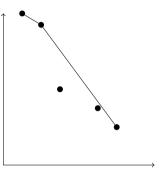
 At each branching node, compute extreme supported IP solutions



S.N Parragh and F. Tricoire Branch-and-bound for bi-objective integer programming optimization-online.org (2015)

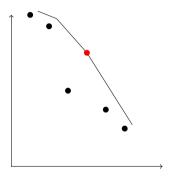
Two new attempts – Lower bound set

- At each branching node, compute extreme supported IP solutions
 - \rightarrow Much stronger bound, but harder to compute



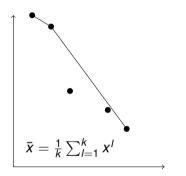
Two new attempts – Branching

- Branch on a variable that separates the current node
 - Branch on one of the extreme points of the bi-objective LP relaxation
 - Branch on variable with fractional average value of IP extreme supported solutions.
 - Branch in objective space



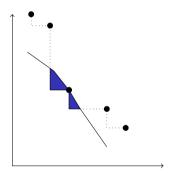
Two new attempts - Branching

- Branch on a variable that separates the current node
 - Branch on one of the extreme points of the bi-objective LP relaxation
 - Branch on variable with fractional average value of IP extreme supported solutions.
 - Branch in objective space



Two new attempts - Branching

- Branch on a variable that separates the current node
 - Branch on one of the extreme points of the bi-objective LP relaxation
 - Branch on variable with fractional average value of IP extreme supported solutions.
 - Branch in objective space



What seems to work best?

Branching in objective space

- Cuts out a large part of the feasible space
- Can be implemented without removing equivalent solutions
- Upper bound set from IP is much stronger
 - Much better pruning potential
 - Time consuming if no good algorithm is known
- Objective space cuts ruin structure!

What seems to work best?

Branching in objective space

- Cuts out a large part of the feasible space
- Can be implemented without removing equivalent solutions
- Upper bound set from IP is much stronger
 - Much better pruning potential
 - Time consuming if no good algorithm is known

• Objective space cuts ruin structure!

What seems to work best?

Branching in objective space

- Cuts out a large part of the feasible space
- Can be implemented without removing equivalent solutions
- Upper bound set from IP is much stronger
 - Much better pruning potential
 - Time consuming if no good algorithm is known
- Objective space cuts ruin structure!

• Utilize problem specific solvers as much as possible

What I want to do

- Utilize problem specific solvers as much as possible
 - Weighted sum scalarizations
 - No complicating constraints

Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem

• For the linear assignment problem: If $x_{ij} = 1$ remove job *i* and agent *j* and add c_{ij}^1 and c_{ij}^2 to objectives. If $x_{ij} = 0$ set $c_{ij} = \infty$

• For the 0-1 knapsack problem: If $x_i = 1$ remove item *i*, reduce capacity by w_i , and add p_i^1 and p_i^2 to objectives. If $x_i = 0$, remove item *i*

• For facility location: If $y_i = 1$ add f_i^1 and f_i^2 to the objective functions and set $f_i^1 = f_i^2 = 0$. If $y_i = 0$ set $f_i = \infty$

ullet ightarrow We can use customized solvers, if we branch on single variables

Some trivial observations

For any efficient solution, \tilde{x} , to

 $\max C^{1}x$ $\max C^{2}x$ s.t.: $x \in \mathcal{X}$

there exists a $0 < \lambda < 1$, $\mathcal{I} \subseteq \{1, \dots, n\}$, and $\tau \in \{0, 1\}^{\mathcal{I}}$ such that

 $ilde{x} \in rg\max\{(\lambda C^1 + (1 - \lambda)C^2)x \ : \ x \in \mathcal{X}, x_i = au_i \ orall i \in \mathcal{I}\}$

Basic algorithm design

Initialization: Initialize a stack, T, of branching nodes with a root node and initialize a lower bound set, L, consisting of feasible tuples $\{x, z\}$

Node selection: Pick a node, $\eta \in T$, from the stack of branching nodes

Upper bound set: Generate a solution for each (extreme) supported non-dominated outcome of η , say $\{x^1, \ldots, x^k\}$. Set $U_{\eta} = (\operatorname{conv}(\{x^1, \ldots, x^k\}))_N$

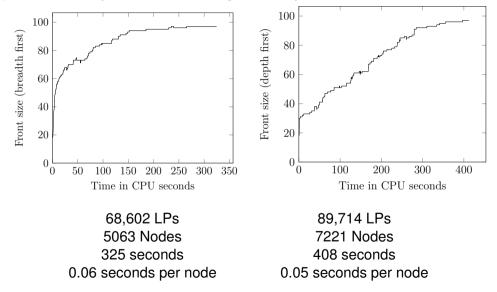
Lower bound set: Add $\{x^1, \ldots, x^k\}$ to *L* and filter for dominated solutions

Pruning: If $U_{\eta} \leq L$, no non–dominated solutions exists in subsequent nodes. Go to Node selection.

Varaible selction: Pick a variable x_i to branch on.

Set
$$\eta_0 = \eta \cap \{x_i = 0\}$$
, $\eta_1 = \eta \cap \{x_i = 1\}$, $T = (T \cup \eta_0 \cup \eta_1) \setminus \eta$.
Go to Node selection

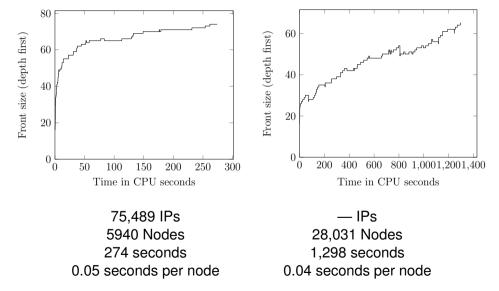
(Very) Preliminary results - Assignment problem



Sune L. Gadegaard

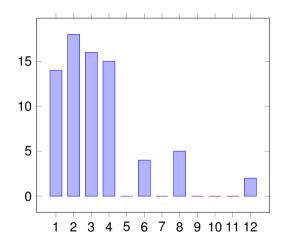
Generating \mathcal{X}_{F}

(Very) Preliminary results – Knapsack



Generating \mathcal{X}_{F}

(Very) Preliminary results – Knapsack



Variable selection

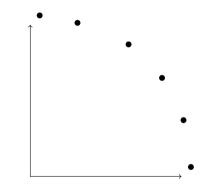
• For the node η to be separated, we must have $\bar{x}_i := \frac{1}{k} \sum_{l=1}^k x_i^l \in (0, 1)$

- Many branching strategies could be used: most fractional, random, adapted versions of strong/pseudo cost/reliability branching.
- Must balance the effort of recomputing lower bound sets, selecting variables, impact on lower bound set a.s.o..

- For the node η to be separated, we must have $\bar{x}_i := \frac{1}{k} \sum_{l=1}^k x_i^l \in (0, 1)$
- Many branching strategies could be used: most fractional, random, adapted versions of strong/pseudo cost/reliability branching.
- Must balance the effort of recomputing lower bound sets, selecting variables, impact on lower bound set a.s.o..

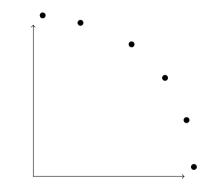
- For the node η to be separated, we must have $\bar{x}_i := \frac{1}{k} \sum_{l=1}^k x_l^l \in (0, 1)$
- Many branching strategies could be used: most fractional, random, adapted versions of strong/pseudo cost/reliability branching.
- Must balance the effort of recomputing lower bound sets, selecting variables, impact on lower bound set a.s.o..

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
Solution 1	1	1	1	0	0	1
Solution 2	1	0	1	0	1	1
Solution 3	0	0	1	1	0	1
Solution 4	1	1	0	0	0	1
Solution 5	1	0	0	1	0	1
Solution 6	0	1	0	1	0	0



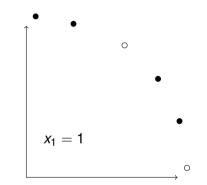
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
Solution 1	1	1	1	0	0	1
Solution 2	1	0	1	0	1	1
Solution 3	0	0	1	1	0	1
Solution 4	1	1	0	0	0	1
Solution 5	1	0	0	1	0	1
Solution 6	0	1	0	1	0	0

What happens if we branch on variable x_1 ?



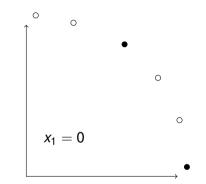
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
Solution 1	1	1	1	0	0	1
Solution 2	1	0	1	0	1	1
Solution 3	0	0	1	1	0	1
Solution 4	1	1	0	0	0	1
Solution 5	1	0	0	1	0	1
Solution 6	0	1	0	1	0	0

What happens if we branch on variable x_1 ?



	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
Solution 1	1	1	1	0	0	1
Solution 2	1	0	1	0	1	1
Solution 3	0	0	1	1	0	1
Solution 4	1	1	0	0	0	1
Solution 5	1	0	0	1	0	1
Solution 6	0	1	0	1	0	0

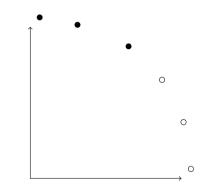
What happens if we branch on variable x_1 ?



.

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
Solution 1	1	1	1	0	0	1
Solution 2	1	0	1	0	1	1
Solution 3	0	0	1	1	0	1
Solution 4	1	1	0	0	0	1
Solution 5	1	0	0	1	0	1
Solution 6	0	1	0	1	0	0

What happens if we branch on variable x_3 ?



Lagrangean relaxation of no goods

- Given a feasible solution \bar{x} a valid inequality is $\sum_{i:\bar{x}_i=0} x_i + \sum_{i:\bar{x}_i=1} (1-x_i) \ge 1$
- For a given $\lambda \in (0, 1)$ let $\mu(\lambda)$ be an optimal dual multiplier to

$$\min_{\mu} \max \left(\lambda C^1 + (1-\lambda)C^2\right)x + \mu \left(\sum_{i:\bar{x}_i=0} x_i + \sum_{i:\bar{x}_i=1} (1-x_i) - 1\right)$$

s.t.: $x \in \mathcal{X}$

Questions?