Finding all efficient solutions to a bi-objective combinatorial
optimization problem

S.L. Gadegaard

Aarhus University
Denmark

2018 RAMOO Nantes

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 1/18

The problem

@ We want to compute all optimal solutions to the problem

max C'x

max C2x
stoxe X

where X C {0,1}".
@ “‘compute all optimal solutions” ~ generate all solutions in Xg
@ Develop a decision space-based algorithm
@ Use the the machinery lying around from single objective optimization.

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 2/18

Motivation

@ Most effort is on generating a minimal complete set of efficient solutions.
@ Often, an optimal solution is not really “optimal” for a decision maker
» The outcome might not be as important as the solution itself (as long as it is a “good”
solution).
» Some “hidden” utility function must be optimized over the set of X¢
» Alternative optimal solutions tell about the problem and its structure
@ Some special functions attain their optimum over the efficient set of multi-objective
combinatorial optimization problem.

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 3/18

Bi-objective branch and bound

A B&B algorithm for bi—objective optimization can be outlined as follows

Initialization: Initialize a stack, T, of branching nodes with a root node and initialize a
lower bound set, L, consisting of feasible tuples {x, z}

Node selection: Pick a node, n € T, from the stack of branching nodes

Upper bound set: Generate an upper bound set, U, of all efficient solutions contained in
n

Lower bound set: Update the lower bound set, L, if new yet non-dominated solutions
have been found

Pruning: If U, = L, no non—dominated solutions exists in subsequent nodes.
Go to Node selection.
Varaible selction: Pick a variable x; to branch on.

Setng=nN{x;=0},n1=nn{x;=1} T =(TUnoUn)\n.
Go to Node selection

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 4/18

Two new attempts — Upper bound set

@ At each branching node, compute bi-objective LP
relaxation

@ S.L Gadegaard, L.R.Nielsen and M. Ehrgott

Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets
To appear in INFORMS Journal on Computing (Accepted 2018)

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 5/18

Two new attempts — Upper bound set

@ At each branching node, compute bi-objective LP
relaxation
— Add cuts *

@ S.L Gadegaard, L.R.Nielsen and M. Ehrgott

Bi-objective branch-and-cut algorithms based on LP relaxation and bound sets
To appear in INFORMS Journal on Computing (Accepted 2018)

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 5/18

Two new attempts — Lower bound set

@ At each branching node, compute extreme
supported IP solutions °

@ S.N Parragh and F. Tricoire

Branch-and-bound for bi-objective integer programming
optimization-online.org (2015)

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 6/18

Two new attempts — Lower bound set

@ At each branching node, compute extreme
supported IP solutions °
— Much stronger bound, but harder to compute ¢

ﬁ S.N Parragh and F. Tricoire

Branch-and-bound for bi-objective integer programming
optimization-online.org (2015)

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 6/18

Two new attempts — Branching

@ Branch on a variable that separates the current
node
» Branch on one of the extreme points of the
bi-objective LP relaxation

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 7/18

Two new attempts — Branching

@ Branch on a variable that separates the current
node
» Branch on one of the extreme points of the
bi-objective LP relaxation
» Branch on variable with fractional average value i
of IP extreme supported solutions.

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 7/18

Two new attempts — Branching

@ Branch on a variable that separates the current
node

» Branch on one of the extreme points of the
bi-objective LP relaxation

» Branch on variable with fractional average value
of IP extreme supported solutions.

» Branch in objective space

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 7/18

What seems to work best?

@ Branching in objective space

» Cuts out a large part of the feasible space
» Can be implemented without removing equivalent solutions

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 8/18

What seems to work best?

@ Branching in objective space

» Cuts out a large part of the feasible space
» Can be implemented without removing equivalent solutions

@ Upper bound set from IP is much stronger

» Much better pruning potential
» Time consuming if no good algorithm is known

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 8/18

What seems to work best?

@ Branching in objective space

» Cuts out a large part of the feasible space
» Can be implemented without removing equivalent solutions

@ Upper bound set from IP is much stronger

» Much better pruning potential
» Time consuming if no good algorithm is known

@ Objective space cuts ruin structure!

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 8/18

What | want to do

@ Utilize problem specific solvers as much as possible

Sune L. Gadegaard Generating Xg

What | want to do

@ Utilize problem specific solvers as much as possible

» Weighted sum scalarizations
» No complicating constraints

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 9/18

Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 10/18

Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
@ For the linear assignment problem: If x; = 1 remove job / and agent j and add c,} and
c; to objectives. If x; = 0 set ¢j = oo

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 10/18

Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem

@ For the 0-1 knapsack problem: If x; = 1 remove item i, reduce capacity by w;, and
add p! and p? to objectives. If x; = 0, remove item i

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 10/18

Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem

e For facility location: If y; = 1 add f! and f? to the objective functions and set
fl=f=0.1fy;=0setf=oc0

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 10/18

Some trivial observations

Branching on single variables, does (usually) not ruin structure of a problem
@ — We can use customized solvers, if we branch on single variables

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 10/18

Some trivial observations

For any efficient solution, X, to

max C'x

max C2x
st.xe X

there existsa0 < A< 1,ZC {1,...,n}, and 7 € {0,1}* such that

X € argmax{(\C"+ (1 = \)C?®)x : xe X,x; =7 VieT}

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 10/18

Basic algorithm design

Initialization: Initialize a stack, T, of branching nodes with a root node and initialize a
lower bound set, L, consisting of feasible tuples {x, z}

Node selection: Pick a node, n € T, from the stack of branching nodes

Upper bound set: Generate a solution for each (extreme) supported non-dominated
outcome of 1, say {x',...,x¥}. Set U, = (conv({x,...,xk})),

Lower bound set: Add {x',...,xX} to L and filter for dominated solutions

Pruning: If U, =< L, no non—dominated solutions exists in subsequent nodes.

Go to Node selection.

Varaible selction: Pick a variable x; to branch on.
Setng =nN{xi=0}nm=nN{xi=1}L T=(TUnUm)\n.
Go to Node selection

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 11/18

(Very) Preliminary results

Assignment problem

100F i 100 | .
£ gf e 80 1
= =
E g o) 1
2 Py
& 40 1 F dof]
g 2 1 & 2 1
=
0050 100 150 200 250 300 35 % 100 200 300 400
Time in CPU seconds Time in CPU seconds

68,602 LPs 89,714 LPs

5063 Nodes 7221 Nodes

325 seconds 408 seconds

0.06 seconds per node 0.05 seconds per node

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 12/18

(Very) Preliminary results — Knapsack

Front size (depth first)

Sune L. Gadegaard Generating Xg

80 F

60 |-

40

20 |-

=

0

| | i
50 100 150 200 250 300
Time in CPU seconds

75,489 IPs
5940 Nodes
274 seconds
0.05 seconds per node

Front size (depth first)

1
O0 200 400 600 800 1,0001,2001,400

Time in CPU seconds

— IPs
28,031 Nodes
1,298 seconds
0.04 seconds per node

2018 RAMOO Nantes

13/18

(Very) Preliminary results — Knapsack

Sune L. Gadegaard Generating Xg

Variable selection

@ For the node 7 to be separated, we must have X; := %ZL x! € (0,1)

Sune L. Gadegaard Generating Xg

Variable selection

@ For the node 7 to be separated, we must have X; := %ZL x! € (0,1)

@ Many branching strategies could be used: most fractional, random, adapted versions
of strong/pseudo cost/reliability branching.

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 15/18

Variable selection

@ For the node 7 to be separated, we must have X; := %ZL x! € (0,1)

@ Many branching strategies could be used: most fractional, random, adapted versions
of strong/pseudo cost/reliability branching.

@ Must balance the effort of recomputing lower bound sets, selecting variables, impact
on lower bound set a.s.o..

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 15/18

Variable selection — an example

X1 Xo X3 X4 X5 Xp °

Solutont 1 1 1 0 0 1

Soluton2 1 0 1 0 1 A1 .
Soluton3 0 0 1 1 0 1

Soluton4 1 1 0 0 0 1 °
Soluton5 1 0 0 1 0 1

Soluton6 0 1 0 1 0 O

[]

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 16/18

Variable selection — an example

X1 Xo X3 X4 X5 Xp °

Solutont 1 1 1 0 0 1

Soluton2 1 0 1 0 1 1 .
Soluton3 0 0 1 1 0 1

Soluton4 1 1 0 0 O 1 °
Soluton5 1 0 0 1 0 1

Soluton6 0 1 0 1 0 O

[]

What happens if we branch on variable x;?

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 16/18

Variable selection — an example

Xq Xo X3 X4 X5 Xg o
Solutont 1 1 1 0 0 1
Soluton2 1 0 1 0 1 1 .
Soluton3 0 0 1 1 0 1
Soluton4 1 1 0 0 O 1 °
Soluton5 1 0 0 1 0 1 Xy =1
Soluton6 0 1 0 1 0 O

O

What happens if we branch on variable x;?

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 16/18

Variable selection — an example

Xq Xo X3 X4 X5 Xg °
Solutont 1 1 1 0 0 1
Soluton2 1 0 1 0 1 1 °
Soluton3 0 0 1 1 0 1
Soluton4 1 1 0 0 O 1 o
Soluton5 1 0 0 1 0 1 x; =0
Soluton6 0 1 0 1 0 O

[]

What happens if we branch on variable x;?

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 16/18

Variable selection — an example

X1 Xo X3 X4 X5 Xp °

Solutont 1 1 1 0 0 1

Soluton2 1 0 1 0 1 1 °
Soluton3 0 0 1 1 0 1

Soluton4 1 1 0 0 O 1 o
Soluton5 1 0 0 1 0 1

Soluton6 0 1 0 1 0 O

O

What happens if we branch on variable x3?

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 16/18

Lagrangean relaxation of no goods

@ Given a feasible solution x a valid inequality is ;5 o Xi + > _j5_1(1 — X)) > 1
@ Foragiven A € (0,1) let u()\) be an optimal dual multiplier to

mJn max (AC' + (1 = X\)C?)x + u(Z Xj + Z (1—x)—1)

i:x;=0 ix;=1

st.xe X

Sune L. Gadegaard Generating Xg 2018 RAMOO Nantes 17/18

Questions?

