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1. Introduction

1



Assumptions and notations

• On the problem:
• GpN,A,Cq, a static, connected, directed and valued graph
• p ´

ř

, i.e. p linear objectives with p ě 2
• Compute 1-to-all (source s to other nodes) shortest paths

• On the instance:
• No specific topology for G
• p positive costs on arcs

• On the solutions:
• No preference on shortest paths
• s P N given:

efficient paths over p objectives from s to all t P Nztsu,
XE , a complete set of efficient paths,
YN “ ZpXE q, the set of non-dominated points

• On the algorithm:
• Label setting principle
• Martins’ algorithm (1984)
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Ingredients and principle of Martins’ algorithm

• Temporary and permanent labels
• Lexicographic selection of a temporary label
• Propagation principle over outgoing arcs
• All permanent labels correspond to efficient paths
• Pruning temporary labels on nodes by dominance
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Motivation and Questions

• Motivations: good base
• to investigate the influence of an instance on the algorithm
• to measure the impact of additional components on the algorithm
• to develop an implementation to be integrated into vOptSolver

• Questions:
• Concerning the maintenance of non-dominated temporary labels

(operations of comparison, insertion, deletion) on nodes:

What is the added value of an advanced data structure for
maintaining on nodes during the iterations of the algorithm?

• Concerning the generation of temporary labels on nodes:

What is the added value of a two-directional strategy on the total
number of temporary labels generated by the algorithm?
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2. On the strategy
to maintain temporary labels
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Observation

§ Maximal number of labels (temporary and permanents) on 1 node:
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Situation

§ Maintaining non-dominated labels on nodes requires operations of
comparison, insertion, deletion.

§ A multi-dimensional data structure is then required for storing the
information and facilitating these operations during the iterations of the
algorithm.

§ The data structures found in specialized literature in MOO are:
• a linear structure

list, sorted or not
Ñ simple vs cost of the pairwise comparison

• a tree structure
AVL-Tree (p “ 2), Quad-Tree (p ě 2), ND-Tree (p ě 2)
Ñ fast vs complexity for maintaining the structure
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ND-Tree

Andrzej Jaszkiewicz and Thibaut Lust, “ND-Tree-Based Update: A Fast
Algorithm for the Dynamic Nondominance Problem”. IEEE Transactions
on Evolutionary Computation, vol. 22, no. 5, pp. 778-791, Oct. 2018.

Principle:
• to divide the objective space

into hyperrectangles
• if a hyperrectangle contains too

many points then it is divided

Parameters:
σ: maximal number of points per hyperrectangle
δ: number of sub-hyperrectangles created when a hyperrectangle is
divided
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ND-Tree: numerical experiments

§ One ND-Tree on each node of the graph:

Linear list vs ND-tree for a grid graph. Cost values are in Ur1; 100s

X axis: Number of nodes (gridSize ˆ gridsize) — Y axis: CPUt (in seconds) in logarithmic scale — Results in average on 50 runs

ñ ND-tree appears competitive against the linear list when
the number of objectives and the number of nodes are high

§§ goto next section
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3. On the strategy
of label propagation
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Observation

§ New assumption:
1-to-1 (source s to destination t) efficient paths

A random graph with clusters (200 nodes
randomly generated, each node is connected with
its 4 closest neighbors according to the e
Euclidean distance) and 3 linear objectives. Cost
values are randomly selected in the range
Ur1; 300s

All efficient shortest paths (in red) between
- the origin node (square in the south-west) and
- the destination node (square in the north-east)

The triangles represent the maximum number of
labels on a node
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Situation

§ Number of labels may grow significantly near the termination node t.

§ Alternative: a bi-directional strategy
• Well-known in single objective case (Nicholson 1966; Pohl 1969)
• Use two separated procedures:

- a forward search from the origin node and
- a backward search starting from the destination node
Ñ two search trees,

potentially expanding fewer labels than a single search

§ Existing literature in MOP:
• Demeyer et al., 2013 (4OR journal)

p ě 2
• Galand et al., 2013 (SOCS’2013 conference)

user preferences, prefered paths
• Sedeño-Noda and Colebrook, 2018 (EURO’2018 conf.)

p “ 2
14
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Speed-up techniques proposed in Demeyer et al., 2013

Main ideas:
• a forward and backward search (similar to the unidirectional

algorithm)
• a stopping condition is based on the use of a vector of minimal

values of objectives for temporary labels

Numerical experiments:
• up to 20 time faster for transportation graphs with 2 and 3

objectives (instances: sparse graphs representing transportation
problems with hundreds of thousands nodes and links, average node
degree between 2 and 3)

• mitigated for random graphs
• not pertinent for complete graphs and square grid graphs

ñ performance of the strategy is dependant on the graph configuration and
predicting the average speedup is difficult.
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Our ongoing attempt on the general case

§ Observation: good results appear with a specific graph topology or when
not considering a subset of XE .

§ Question: can we find a way to improve the computation time using a
bi-directional strategy considering:

• a (minimal) complete set of XE

• any graph topology

§ Proposals :

• a separation of the graph in two sub-graphs in preprocessing
• identify graph topologies where a bi-directional separation strategy

may be interesting or unnecessary
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About the separation of the graph

Main ideas:
• compute a separation of the

graph in two parts such that
the source is in one sub-graph
and the destination node is in
the other one

• apply Martins’ algorithm on each sub-graph
• merge the permanent labels existing at the frontier of the two

sub-graphs

Difficulties :
• cost of merging of the paths
• are we sure to compute YN?
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About the separation of the graph

§ Question: is it possible to find a way to separate the graph such that
there is no paths crossing each sub-graph twice or more?

• no in general in an undirected graph
• maybe in a directed graph
• yes in a “well-oriented” graph

§ an example of
“well-oriented” graph

s

A

B

...

...

...

E

F

t

§ Remaining questions:

• efficiency of a separation strategy in “well-oriented” graph?
• can we find a way to compute a good separation in more random

directed graphs?
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4. Summary
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Conclusion and ongoing works

Ñ A novel context of using ND-tree for maintaining temporary labels
Ñ A learning on the bi-directional strategy
Ñ A (coming) open-source package dealing with several MOSP

PROS:
• ND-tree: interesting even with few objectives
• bi-directional strategy: interesting for transportation graphs

CONS:
• ND-tree: parameters to tune
• bi-directional strategy: predicting the average speedup is difficult

NOW:
• ND-tree: measuring the impact of σ and δ
• Bi-directional strategy: dealing with stated questions
• Label setting algorithm: working on others pending questions
• vOptSolver: releasing the MOSP.jl package

19



MOSP.jl awaited to be integrated to vOptSolver

http://voptsolver.github.io/vOptSolver/
20
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