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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

On a NP-hard problem would it be interesting to have information
on its worst-case complexity ?

How can we quantify this complexity ?

⇒ Exponential-time algorithms are tools to answer this
question.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

What is called an “exponential algorithm”?....

For a NP-hard problem, an exact algorithm for which the
worst-case (time/space) complexity can be computed.

Find“theoretical”algorithms with worst-case time/space upper
bounds as low as possible...

The MIS problem has been shown to be solvable O∗(2n ) in 1977, O∗(1.381n ) in 1999, O∗(1.2201n )

in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Why designing exponential time/space algorithms (ETA) ?

The beauty of the game,
To provide a quantitative information on the difficulty of a
NP-hard problem,
Because, in a short future, ETA will start to beat in practice
heuristics !
O∗(1.2201n ) is faster than O(n4) for n ≤ 90,

O∗(1.1n ) is faster than O(n4) for n ≤ 230,
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

A lot of works on graph or decision problems (70’s, 2000-),

3-SAT : O∗(1.3211n) time (Iwama et al., 2010),
Hamiltonian circuit : O∗(1.657n) time (Bjorklund, 2010),
MIS : O∗(1.2132n) time (Kneis et al, 2009),
List coloring : O∗(2n) time (Bjorklund and Husfeldt, 2006)
and (Koivisto, 2006),
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

What about scheduling problems (single machine) ?
Problem brute force wctc wcsc Reference

1|dec|fmax O∗(n!) O∗(2n ) exp [1]
1|dec|

∑
i fi O∗(n!) O∗(2n ) exp [1]

1|prec|
∑

i Ci O∗(n!) O∗((2− ε)n ) exp [2]
1|prec|

∑
i wiCi O∗(n!) O∗(2n ) exp [3]

1|di |
∑

i wiUi O∗(n!) O∗(2n ) exp [3]
O∗(1.4142n ) exp [4]

1|di |
∑

i Ti O∗(n!) O∗(2n ) exp [3] & [4]
1|di |

∑
i wiTi O∗(n!) O∗(2n ) poly [5]

1|ri , prec|
∑

i wiCi O∗(n!) O∗(3n ) exp [3] & [4]

[1] F. Fomin, D. Kratsch (2010). Exact Exponential Algorithms, Springer.

[2] M. Cygan, M. Philipczuk, M. Philipczuk, J. Wojtaszczyk (2011). Scheduling partially ordered jobs faster than

2n , ESA 2011.

[3] G. Woeginger (2003). Exact algorithms for NP-hard problems : A survey, in M. Junger, G. Reinelt, G. Rinaldi

(Eds) : Combinatorial Optimization – Eureka I shrink !, Springer, LNCS 2570.

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T’kindt (2013). On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[5] M. Garraffa, L . Shang, F. Della Croce, V.T’kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine total tardiness problem, Theoretical Computer Science, 745, pp 133-149.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

What about scheduling problems (others) ?
Problem brute force wctc wcsc Reference

P |dec|fmax O∗(mnn!) O∗(3n ) exp [4]
P |dec|

∑
i fi O∗(mnn!) O∗(3n ) exp [4]

P4||Cmax O∗(4n ) O∗(2.4142n ) exp [4]
P3||Cmax O∗(3n ) O∗(1.7321n ) exp [4]
P2||Cmax O∗(2n ) O∗(1.4142n ) exp [4]

P2|di |
∑

i wiUi O∗(3n ) O∗(1.7321n ) exp [4]

F2||C k
max O∗(2n ) O∗(1.4142n ) exp [4]

F3||Cmax O∗(n!) O∗(3n ) exp [6]
F3||fmax O∗(n!) O∗(5n ) exp [6]
F3||

∑
i fi O∗(n!) O∗(5n ) exp [6]

J2||C k
max O∗(2n ) O∗(1.4142n ) exp [7]

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T’kindt (2013). On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[6] L. Shang, C. Lenté, M. Liedloff, V.T’kindt (2016). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2), pp.227-233.

[7] F. Della Croce, C. Koulamas, V.T’kindt (2016). A constraint generation approach for two-machine shop

problems with jobs selection, Eur. J. Oper. Research, submitted.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

We focus on two technics with applications to scheduling :

Branch-and-reduce,
Sort&Search.

What happen when multiple objectives are optimized ?
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-... What ? !

It is different from known branching algorithms,

Lower bounding : not a stopping rule,
⇒ We cannot prove that in the worst-case it always prune
nodes,
Dominance conditions : not reduction rules,
⇒ They are only sufficient conditions of optimality.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and the MIS

Consider the Maximum Independent Set (MIS) problem :

Let G = (V ,E ) be an undirected graph,

An independent set S is a set of vertices such that no two
vertices from S are connected by an edge,

The MIS problem consists in finding S with a maximum
cardinality,

a b c

d e

g

a b c

d e

f

S = {a, c, e, f}

A graph G A Maximum Independent Set S
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and the MIS

A first analysis of the problem shows that when d(v) ≤ 2,
∀v ∈ V , the problem is polynomially solvable,

This is used as a stopping rule in the Branch-and-Reduce
approach (BraRed),

We now present the BraRed algorithm,
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

a b c

d e

g

Let us consider a BraRed algorithm with the following
branching rule :

Select the vertex v of maximum degree,
Create a child node with v ∈ S and a child node with v /∈ S .
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graph of max degree 2... solvable in
polynomial time.
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Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

In that case 2 nodes have been built.

Reduction rule : when a decision is taken on a vertex v ,
decisions are taken for all its neighborhood,

Stopping rule : for a node, stop branching as far as the
maximum degree is 2.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and the MIS

What is the worst-case complexity of BraRed ?

Let us observe the branching rule : T (n) is the time required
to solve a problem with n vertices,

We can state that :

T (n) ≤ T (n − 1− d(v)) + T (n − 1)

with v the vertex selected for branching.

The worst case is obtained when d(v) is minimal, i.e.
d(v) = 3.

So, in the worst case the time complexity for solving the
problem is T (n) = T (n − 4) + T (n − 1) with n = |V |.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

Well, we can use the fact that T (n) = O∗(xn),
with x the largest zero of the function f (x ) = 1− x−4 − x−1.

By using a solver like Mathlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed.

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Multiobjective optimization

Let us turn to multiobjective optimization,

Assume that we have a set of K criteria Zi to minimise
over a set of solutions S,

The notion of optimality is here defined by means of Pareto
optimality,
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A solution x is a weak Pareto op-

timum iff there does not exist ano-

ther solution y such that Zi(y) <

Zi(x), ∀i = 1, ...,K .
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Multiobjective optimization

How to compute a Pareto optimum ?
1 Convex combination of criteria,
2 ε-constraint approach,
3 Lexicographic approach,
4 Parametric approach,
5 Metric based approaches,
6 ...
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Multiobjective optimization

A focus on the ε-constraint approach,

Solving, for a fixed k , all (Pk
ε ) enables to compute a set

E ⊆WES ⊆WE ,

Let us use that approach on a bicriteria scheduling problem.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and multiobjective scheduling

Let us consider the following scheduling problem :

n jobs are to be scheduled on 2 machines,
Each job j is defined by pj ,1, pj ,2,
All jobs share the same common due date d (unknown),
Minimize d and

∑
j Uj (number of tardy jobs).
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and multiobjective scheduling

This problem is referred to as F2|dj = d |d ,
∑

j Uj ,

It is NP-hard in the ordinary sense,

In brief, what we can show :
1 There are exactly (n + 1) non dominated criteria vectors,
2 Solving the ε-constraint problem :

Min d st
∑

j Uj ≤ ε
is equivalent to solve :

Min d st
∑

j Uj = ε.
3 If we know the early jobs, d can be computed in poly. time

(Johnson’s algorithm, 1954).

So, what’s the worst-case time complexity of computing one
strict Pareto optimum ?
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and multiobjective scheduling

Let us design the following BraRed algorithm ([7]) :

Branching : a job is early or
tardy,
Reduction : none,
Stopping :

∑
j Uj > ε.

[7] C. Lenté, M. Liedloff, A. Soukhal, V. T’kindt (2014),Exponential algorithms for scheduling problems, HAL,

<hal-00944382>.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and multiobjective scheduling

Time complexity analysis :

Due to the branching scheme, we have :

T (n, ε) = T (n − 1, ε) + T (n − 1, ε− 1) =
(
n
ε

)
.

Wlg, assume that ε = λn with λ ∈ [0; 1],

Theorem ([7])

BraRed solves the problem with a worst-case time complexity in
O∗([( 1λ)

λ( 1
1−λ)

1−λ]n), i.e. O∗(c(λ)n) with c(λ) = ( 1λ)
λ( 1

1−λ)
1−λ,

and polynomial space.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce and multiobjective scheduling

The result is shown by using Stirling’s formulae to
approximate k !,

An interesting picture (ε = λn ),
1
λ

λ c(λ) Worst-case bound

2 0.50 2 O∗(2n )
3 0.33 1.8898 O∗(1.8898n )
4 0.25 1.7547 O∗(1.7547n )
5 0.20 1.6493 O∗(1.6493n )
6 0.16 1.5691 O∗(1.5691n )
7 0.14 1.5069 O∗(1.5069n )
8 0.12 1.4575 O∗(1.4575n )
9 0.11 1.4174 O∗(1.4174n )

10 0.10 1.3841 O∗(1.3841n )
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Branch-and-Reduce : to conclude

We have upper bounds on the worst-case time complexity for
the flowshop problem,

A brute force enumeration approach Enum solves the problem
in O∗(2n) time and polynomial space,

A Sort & Search approach solves the problem in O∗(1.4143n)
time... and space.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([8]) to solve the
knapsack problem (SCP),

It has been extended by Lenté et al. ([4]) to solve Multiple
Constraint Problems (MCP),

[8] E. Horowitz and G. Sahni.(1974) Computing partitions with applications to the knapsack problem,

Journal of the ACM, vol 21, pp.277-292.

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T’kindt (2013). On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Sort & Search : the principles

The idea is the following : separate the instance into 2
sub-instances,

I1 I2

Instance I

Then, enumerate all partial solutions from I1 and all partial
solutions from I2,
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Sort & Search : the principles

By recombination of partial solutions, find the optimal
solution of the initial problem

I1 I2

Instance IS1

S2

s1 s2

A complete solution s = s1 + s2

The combinatoric appears when building S1 and S2 by
enumeration (sort phase) and when finding in these sets the
optimal solution (search phase).
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Sort & Search and multiobjective optimization

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

This approach has been extended by Shang and T’kindt ([9])
to solve Multiobjective MCP (MMCP),

So, what is the look of a MMCP ?

[9] L. Shang and V. T’kindt (2018). A Sort & Search method for multicriteria optimization problems with

applications to scheduling theory, submitted, 16 pages.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Sort & Search and multiobjective optimization

The (MMCP) can be defined as follows :

Minimize f1(aj , b
1
k )

...
Minimize fK (aj , b

K
k )

s.t.

g`(aj , b
K+`
k ) ≥ 0, (1 ≤ ` ≤ dB )

a j ∈ A, bk ∈ B .

with A a table of nA vectors of dimension dA,
B a table of nB vectors of dimension (dB +K ),
fh (1 ≤ h ≤ K ) and g` (1 ≤ ` ≤ dB ), (dB +K ) functions
from RdA+1 to R which are non-decreasing with respect to
their last variable.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Sort & Search and multiobjective optimization

Theorem ([9])

If a multiobjective optimization problem can be reformulated as a
(MMCP) then there exists a Sort & Search algorithm to solve it
and which requires O(|E | · (KnB logdB+2

2 (nB ) +K2K )) time and

O(nB logdB−12 (nB ) + |E |) space.

Example : the P2|di |Cmax,Lmax problem,

K = 2, dB = 3, nA = nB = 2
n
2 ,

Worst-case time complexity is O∗(|E | · 1.4143n) and the space
complexity is O∗(1.4143n + |E |),
As |E | ≤ 2n , the time complexity is O∗(2.83n) and the space
complexity is O∗(2n).
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Sort & Search : to conclude

Sort & Search is a powerfull technique which can be applied
to a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

But, this provides insights on “quantifying the hardness of
problems”... do all NP-hard problems have the same
complexity in the worst-case ?
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Quantifying the hardness of the enumeration of Pareto optima: a
theoretical framework with application to scheduling problems

Conclusions

What can you retrieve from such a presentation ?

Multiobjective optimization is a totally unexplored area as far
as ETA algorithms are concerned...
... despite the importance of the question :

Do all Pareto optima require the same “complexity” to be
computed ?

On a practical side : study the worst-case behavior of your
exact algorithms to improve when they do not work
(“branching” issues),
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