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Unconstrained Binary Multiobjective Optimization Problem
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Simple arrangement of hyperplanes

Hyperplanes hy, ..., h, in R™, m <n

Definitions

> Intersection of any subset of m hyperplanes is a unique
point

» Intersection of any subset of (m + 1) hyperplanes is
empty

ht

ha /

ho hs




Definitions

Central arrangement of hyperplanes

Hyperplanes hy, ..., h, in R™, m <n

Definitions

h

Y-

y2

ha

hy hs




Definitions

Central arrangement of hyperplanes

Hyperplanes hy, ..., h, in R™, m <n
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Arrangements and Zonotopes
Zonotope:

6i=10,p], pi € R™, i € {1,....n}

Associated arrangement of hyperplanes:
hi={y € R™ : (p;,y) = 0} with

hl+ = {y c ]Rm : <p”y> > 0} Interrelations
hi ={y € R™ : (pi,y) <0}
y2 ho y2 b
— + -
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The number of cells in a central arrangement of hyperplanes
in R™, m fixed, is bounded by

2 . Interrelations

Thomas Zaslavsky
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Complexity

The number of cells in a central arrangement of hyperplanes
in R™, m fixed, is bounded by

m—1
n—1 :
2 . ( ) . Interrelations
i=o \ !

» The same bound holds for the number of extreme
supported solutions for (mo.0c).
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Weight Space Decomposition

P(A) = (~1,-1,—1,+1)

x = (0,0,0,1)

P(\) = (+l,—1,—1,+l)T

X = (1’070’1)T Interrelations
P(A) = (+1,-1,+1,+1)

x = (1,0,1,1)T

P()‘) = (_1’_1’+1’+1)T
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Input: hyperplanes h;, i € {1,...,n}
1: for all intersection points A of (m — 1) hyperplanes do
2: if A € WO then
3: generate all solutions corresponding to A

Interrelations

Output: set of supported solutions

» For simple arrangements: Complexity O(n™).

» For nonsimple arrangements: Complexity O(2").
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n n n
1 2 m
o 10 = (35t 3 3
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Multiobjective

n
s.t. Z Wi X S W knapsack problem
i=1
x; €{0,1} Vie{l1,..,n}.

with p; = (p},...,p™")T € Z™\ {0} and 0 < w; < W,
Vie{l,.,n}, W<> w.
i=1




Solution Approach

Generalized versions of the dichotomic search.

Fritz Bokler and Petra Mutzel

Output-Sensitive Algorithms for Enumerating the Extreme Nondominated Points of Multiobjective
Combinatorial Optimization Problems

Springer, 2015

Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott

A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a
Multiobjective Integer Programme

INFORMS Journal on Computing, 2010

Ozgiir Ozpeynirci and Murat Kéksalan

An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed
Integer Programs

Management Science, 2010
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