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Multiobjective constrained optimization

Constrained multiobjective optimization problem

min f(z) = (f1($),,fm($))T

e
with

Q={zell,uy CR":gj(x)<0,j=1,....p, Mz)=0,l=1,...,q}
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Multiobjective constrained optimization

Constrained multiobjective optimization problem

min f(z) = (f1($),,fm(37))T

e
with

Q={zell,uy CR":gj(x)<0,j=1,....p, Mz)=0,l=1,...,q}

o /e (RU{—00})", ue (RU{+oo})";
@ All objective functions are at least C?;
@ All constraint functions are at least C'!;

@ We also allow unconstrained or box-constrained optimization (p,q = 0
and/or ¢ = {—oco}",u = {c0}").

J. Fliege (RAMOO02016) MOSQP 24 June 2016 4/33



Outline

© The algorithm

J. Fliege (RAMOO02016) MOSQP 24 June 2016 5/33



Algorithm main lines

@ Does not aggregate any of the objective functions

J. Fliege (RAMOO02016) MOSQP 24 June 2016 6 /33



Algorithm main lines

@ Does not aggregate any of the objective functions

@ Uses SQP based techniques for MOO

J. Fliege (RAMOO02016) MOSQP 24 June 2016 6 /33



Algorithm main lines

@ Does not aggregate any of the objective functions
@ Uses SQP based techniques for MOO

@ Keeps a list of nondominated points

J. Fliege (RAMOO02016) MOSQP 24 June 2016

6/ 33



Algorithm main lines

@ Does not aggregate any of the objective functions
@ Uses SQP based techniques for MOO

@ Keeps a list of nondominated points

@ Constraints violations are considered as additional objectives in the

linesearch steps.

J. Fliege (RAMOO2016) MOSQP

24 June 2016

6/ 33



Algorithm main lines

@ Does not aggregate any of the objective functions
@ Uses SQP based techniques for MOO
@ Keeps a list of nondominated points

@ Constraints violations are considered as additional objectives in the
linesearch steps.

@ Tries to capture the whole Pareto front from two algorithmic stages:
search and refining
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The algorithm An illustration

Algorithm illustrated - setup
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The algorithm An illustration
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Algorithm illustrated - refining
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The algorithm Some details

Search direction computation

For each xj. in the list of nondominated points:

Spread (1 =1,...,m)

1
d; € argmin  Vfi(zp)Td+ =d' Hid
deRn 2

st gj(zr) + Vgi(zp)Td<0, j=1,...
hi(zy) + Vh(z)Td=0, 1=1,...

(<zxp+d<u

P
g

where H; is a positive definite matrix.

d; is a descent direction for f;.

Linesearch: test z + ad; (o =2, t =0,1,2,...) for being nondominated.
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The algorithm Some details

Search direction computation

For each xj. in the list of nondominated points:

Refining
min ;fi(x)
st. filx) < filzg), i=1,....m
hl(fE)ZO, l= ) -5 q

Iterations of an SQP-type method for this problem are carried out, using

xj as a starting point.

MOSQP
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The algorithm Some details

Some theoretical considerations
@ From spread stage we obtain new points.

@ The spread stage performs a finite number of iterations. (No
asymptotics here!)

@ The refining stage drives all the available nondominated points to
Pareto criticality,

@ by obtaining a new point that decreases or maintains all the objective
function values.

@ (Local) Pareto criticality can be verified based on the refining
single-objective optimization problem.
@ Convergence theory available for the proposed algorithm.
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Implementation Implementation

Implementation

@ Implemented in MATLAB (fast prototyping, high performance)

@ (Single-objective) subproblems are solved by quadprog and fmincon
MATLAB solvers

@ Maximum of 20 iterations on the spread stage

@ We consider three possibilities for the H; matrix:
o H; = I, in both stages
o H; = (V2fi(xx) + E;) in both stages (E; p.d. matrix)
o H; = I, in the spread stage and H; = (V2fi(xx) + E;) in the refining
stage

@ Two (list) initialization strategies are implemented:
i=1,...,2nS).

u—~

o line — a line between ¢ and u (x; = £ + i2n5'

e rand — a uniform (¢,u) random distribution.
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Academic test set

@ Problems from the academic literature.

@ Problems have been coded in AMPL (and a MATLAB-AMPL
interface was used). Exact derivatives are provided by AMPL.

@ 67 bound constrained test problems (50 problems with m = 2, 17
problems with m = 3), n varying between 2 and 30.

@ 21 constrained test problems (12 problems with m = 2, 9 problems

with m = 3), 7 with nonlinear constraints, 9 with linear constraints,
and 5 with both, n varying between 2 and 20.
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Test set and solvers
Solvers
@ We consider six implementations of the MOSQP solver: MOSQP
(H =1, line), MOSQP (H = V?f, 1line), MOSQP

(H = (I,V%f), line), MOSQP (H = I, rand), MOSQP
(H =V?f, rand), MOSQP (H = (I, V2f), rand).
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Solvers

@ We consider six implementations of the MOSQP solver: MOSQP
(H =1, line), MOSQP (H = V?f, 1line), MOSQP
(H = (I,V%f), line), MOSQP (H = I, rand), MOSQP
(H = V2f, rand), MOSQP (H = (I,V?f), rand).

@ MOSQP compared against NSGA-II (C version) and MOScalar
(weighted-sum, equidistant weights).

@ We report numerical results via performance and data profiles.

o Performance profiles: Purity, Spread-Gamma Metric, Spread-Delta
Metric, and Hypervolume metric. (Small values <> better
performance.)

o Data profiles: how likely is an algorithm to solve a problem, given a
computational budget.
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Numerical results Metrics and performance profiles

Performance metrics

@ Spread-Gamma Metric
For given solver and MOO problem, measures the largest gap in the
approximate Pareto front.
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Numerical results Metrics and performance profiles

Performance metrics

@ Spread-Gamma Metric
For given solver and MOO problem, measures the largest gap in the
approximate Pareto front.

@ Spread-Delta Metric
For given solver and MOO problem, measures the uniformity of gaps
in the approximate Pareto front.

@ Hypervolume
For given solver and MOO problem, measures the volume of the
space enclosed by the nondominated points and utopia point.

o Purity
For a given solver, a set of solvers, and a given MOO problem,
measures 1 / (percentage of points computed that are not dominated
by points from other solvers).
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Performance profiles

@ Performance profiles.
Represent in one figure, for each solver s, the cumulative distribution

function p, for a given performance metric:
let P bet the set of problems considered and 7, s performance metric

value of solver s on problem p. Then,

ps(T) = {p € P:rps <7}H/IP|.
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Metrics and performance profiles
Performance profiles
@ Performance profiles.
Represent in one figure, for each solver s, the cumulative distribution
function p, for a given performance metric:

let P bet the set of problems considered and 7, s performance metric
value of solver s on problem p. Then,

ps(T) = {p € P:rps <7}H/IP|.

@ Solvers with larger lim,_,, ps(7) are more robust. If ps(7) = 1 then
solver s solves all given problems.
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Constrained test set (Hypervolume)

Average hypervolume performance profile for 10 runs (all problems)
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Constrained test set (Purity)

Purity performance profile with the best of 10 runs
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Constrained test set (Purity)

Purity performance profile (all bi-objective problems)
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Constrained test set (Spread)

Average A performance profile for 10 runs
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Numerical results Metrics and performance profiles

Constrained test set (Spread)

Average T performance profile for 10 runs
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Data profiles

Indicate how likely an algorithm is to ‘solve’ a problem, given some
computational budget.

Let IV, s be the number of function and gradient evaluations required for
solver s to solve problem p:

(n+1)(n+2)
2

1

Nps.fi= Y (#fi + n#V fi + #Vsz) ;
Np78 = p737f + N »$,9 + N ,85he

Consider the metric

ds(0) = {p € P: Nps < a}|/IP.
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Bound constrained test set

Data profile with the average of 10 runs (e=0.99)
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Constrained test set

Data profile with the average of 10 runs (e=0.99)
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Numerical results Numerical results — applications in Space Engineering

Space Engineering: Earth-Jupiter Mission

f1 = AV~ fuel use; and fy = total travel time.
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Numerical results — applications in Space Engineering
Space Engineering: Rosetta bi-objective problem

f1 = AV~ fuel use; and fy = total travel time.

Rosetta Pareto fronts, solvers best run
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Conclusions

Conclusions

@ We propose a method for constrained multi-objective optimization

based on SQP, (MOSQP).
@ Convergence proof establishes fast local convergence to Pareto front.
@ Implementation of the proposed algorithm in MATLAB.

@ Numerical results confirm the solver competitiveness and robustness.
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