Bound set based branch-and-cut algorithms for bi-objective combinatorial optimization problems

Sune Lauth Gadegaard¹ Matthias Ehrgott ² and Lars Relund Nielsen¹

 $^{1}\mbox{Department}$ of Economics and Business Economics, Aarhus University

²Department of Management Science, Lancaster University

June 24, 2016

Outline

- ► Notation and definitions
- ▶ Branch and cut
- Bound sets
- Cutting plane algorithm
- Pruning
- Bound set update
- Branching
- Conclusions

Notation

We want to solve a BOCO of the following form

min
$$Cx$$

s.t.: $Ax \le b$
 $x \in \{0,1\}^n$

For simplicity

- $\mathcal{X} := \{x \in \{0,1\}^n : Ax \le b\}.$
- ▶ $\underline{\mathcal{X}} := \{x \in [0,1]^n : Ax \leq b\} \leftarrow \text{The LP relaxation}$

Orderings

Definition

For $z^1, z^2 \in \mathbb{R}^2$ we say that

$$z^1 \le z^2 \Leftrightarrow z_i^1 \le z_i^2$$
, for $i = 1, 2$
 $z^1 \le z^2 \Leftrightarrow z^1 \le z^2$ and $z^1 \ne z^2$
 $z^1 < z^2 \Leftrightarrow z_i^1 < z_i^2$, for $i = 1, 2$

Cones

Definition

By \mathbb{R}^2_{\geq} we define the set

$$\mathbb{R}^2_{\geq} = \{ z \in \mathbb{R}^2 : z \ge 0 \}$$

Similarly for R^2 and \mathbb{R}^2 .

Efficiency

Definition

 $\hat{x} \in \mathcal{X}$ is called *efficient* if there does not exist another $x \in \mathcal{X}$ such that

$$Cx \le C\hat{x}$$

The corresponding outcome vector, $\hat{z} := C\hat{x}$, is called *non–dominated*.

Notation

 \mathcal{X}_{E} set of all efficient solutions.

$$\mathcal{Z}_N$$
 $C\mathcal{X}_E = \{z \in \mathbb{R}^2 : z = Cx, x \in \mathcal{X}_E\}$

 $\bar{\mathcal{Z}}$ upper bound set, $\bar{\mathcal{Z}} \subseteq C\mathcal{X}$.

L lower bound set.

 η an active branching node.

 $\mathcal{X}(\eta)$ feasible set of node η .

 $\underline{\mathcal{X}}(\eta)$ LP relaxed version of $\mathcal{X}(\eta)$.

Single objective branch and bound:

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve relaxation.
 - If solution is integral, update incumbent and prune.
 - ► If subproblem contains no improving solutions, prune. Else branch.

Single objective branch and bound:

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve relaxation.
 - If solution is integral, update incumbent and prune.
 - ► If subproblem contains no improving solutions, prune. Else branch.

Bi–objective branch and bound:

1. Pick an active node

Single objective branch and bound:

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve relaxation.
 - If solution is integral, update incumbent and prune.
 - ► If subproblem contains no improving solutions, prune. Else branch.

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.

Single objective branch and bound:

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve relaxation.
 - If solution is integral, update incumbent and prune.
 - ► If subproblem contains no improving solutions, prune. Else branch.

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary

Single objective branch and bound:

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve relaxation.
 - If solution is integral, update incumbent and prune.
 - ► If subproblem contains no improving solutions, prune. Else branch.

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve (bi–objective) relaxation
 - If solution(s) integral, update incumbent set and branch.

Single objective branch and bound:

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve relaxation.
 - If solution is integral, update incumbent and prune.
 - ► If subproblem contains no improving solutions, prune. Else branch.

- 1. Pick an active node
- 2. If node is infeasible \rightarrow prune it.
- 3. Add cuts if necessary
- 4. Solve (bi–objective) relaxation
 - If solution(s) integral, update incumbent set and branch.
 - ► If subproblem contains no *efficient solutions*, prune. Else branch.

Lower bound set

▶ Lower bound on the non-dominated frontier

Lower bound set

- ▶ Lower bound on the non-dominated frontier
- ► A set of points ensuring, that all solutions lie *above*!

Lower bound set

- ► Lower bound on the non-dominated frontier
- ► A set of points ensuring, that all solutions lie *above*!
- ► Relax integrality constraints

Lower bound set

- ► Lower bound on the non-dominated frontier
- ► A set of points ensuring, that all solutions lie *above*!
- Relax integrality constraints

Upper bound set

Upper bound on the non-dominated frontier

Lower bound set

- Lower bound on the non-dominated frontier
- ▶ A set of points ensuring, that all solutions lie *above*!
- Relax integrality constraints

Upper bound set

- Upper bound on the non-dominated frontier
- We only need to look for Pareto solutions below the upper bound set

Lower bound set

- Lower bound on the non-dominated frontier
- ► A set of points ensuring, that all solutions lie *above*!
- Relax integrality constraints

Upper bound set

- Upper bound on the non-dominated frontier
- We only need to look for Pareto solutions below the upper bound set
- Outcome vectors of feasible solutions

Lower bound set

- ► Lower bound on the non-dominated frontier
- ► A set of points ensuring, that all solutions lie *above*!
- Relax integrality constraints

Upper bound set

- Upper bound on the non-dominated frontier
- We only need to look for Pareto solutions below the upper bound set
- Outcome vectors of feasible solutions

We only need to search *between* the upper and lower bound sets

Cutting planes

Single objective

- Strengthen the lower bound
- Approximate the integer hull of solutions in the direction of the objective function

Multi objective

- ► Strengthen the lower bound *set*
- Approximate the integer hull of solutions in the direction of the objective functions

Modified NISE-algorithm

The NISE algorithm works by solving a series of problems of the form

$$\min \lambda c^{1}x + (1 - \lambda)c^{2}x$$
s.t.: $Ax \le b$

$$0 \le x \le 1$$

Modified NISE-algorithm

- 1. Update λ according to the NISE scheme
- 2. Solve the weighted sum LP and obtain optimal solution x^*
- 3. If a cut $\pi^T x \leq \pi_0$ exists add it, and go back to 2.
- 4. Else record c^1x^* and c^2x^* , and go to 1.

An example of cut effect

Bound fathoming

• We assume \bar{Z} is initialized with the lexicographic minimizers.

Bound fathoming

• We assume \bar{Z} is initialized with the lexicographic minimizers.

Theorem

A subproblem corresponding to branching node η contains no efficient solutions, if the set

$$L(\eta) + \mathbb{R}^2_{\geq}$$

contains no local Nadir points.

Bound fathoming – An illustration

Bound fathoming – An illustration

Bound fathoming – An illustration

Bound fathoming: Explicit PIP-test

How to check this?

How to check this?

► Solve the Bi–objective LP-relaxation of the node using NISE algorithm

How to check this?

- Solve the Bi-objective LP-relaxation of the node using NISE algorithm
 - Get the extreme points of the frontier

How to check this?

- Solve the Bi-objective LP-relaxation of the node using NISE algorithm
 - ▶ Get the extreme points of the frontier
- ► Intersect with the bounding box from lex-min solutions

How to check this?

- Solve the Bi-objective LP-relaxation of the node using NISE algorithm
 - ► Get the extreme points of the frontier
- Intersect with the bounding box from lex-min solutions
- ▶ Use a PIP algorithm

Perform the test using linear programming.

- $ightharpoonup z^N$ is a local Nadir point
- $\{\underline{z}^1, \dots, \underline{z}^L\}$ extreme points of $(C\underline{\mathcal{X}}(\eta))_N$.

$$\min s_1 + s_2 \tag{1}$$

s.t.:
$$\sum_{l=1}^{L} \underline{z}_{1}^{l} \lambda_{l} - s_{1} \leq z_{1}^{N},$$
 (2)

$$\sum_{l=1}^{L} \underline{z}_{2}^{l} \lambda_{l} - s_{2} \le z_{2}^{N}, \tag{3}$$

$$\sum_{l=1}^{L} \lambda_l = 1. s_1, s_2 \ge 0. (4)$$

Implicit LP-test

Implicit test using linear programming

- $ightharpoonup z^N$ is a local Nadir point
- $\underline{\mathcal{X}}$ LP relaxation

$$\min s_1 + s_2$$
s.t.: $c^1 x \leq z_1^N$,
$$c^2 x \leq z_2^N$$
,
$$x \in \mathcal{X}$$
.
$$s_1, s_2 > 0$$
.

Nodes are **not** dominated

Simple test to check if a node is *not* dominated:

Theorem

A branching node η cannot be pruned by previous theorem, if there exits $\lambda \in (0,1)$ and $z \in \mathcal{N}(\bar{Z})$ such that

$$Cx^{\lambda} \leq z$$

where $x^{\lambda} \in \arg \min\{(\lambda c^1 + (1 - \lambda)c^2)x : x \in \underline{\mathcal{X}}(\eta)\}.$

Bound set updating

► Solve scalarized LP-relaxation

$$\min\{(\lambda c^1 + (1-\lambda)c^2)x : x \in \underline{\mathcal{X}}(\eta)\}\$$

before solving bi-objective LP-relaxation.

Bound set updating

► Solve scalarized LP-relaxation

$$\min\{(\lambda c^1 + (1-\lambda)c^2)x : x \in \underline{\mathcal{X}}(\eta)\}\$$

before solving bi-objective LP-relaxation.

► Inherit lower bound set of parent node, and update!

- ▶ If we branch in objective space, child nodes should be resolved (more on branching in a minute).
- ► If the lower bound set from scalarization strictly dominates that of parent node, then we resolve

- ► If we branch in objective space, child nodes should be resolved (more on branching in a minute).
- ► If the lower bound set from scalarization strictly dominates that of parent node, then we resolve

- ► If we branch in objective space, child nodes should be resolved (more on branching in a minute).
- ► If the lower bound set from scalarization strictly dominates that of parent node, then we resolve

- ▶ If we branch in objective space, child nodes should be resolved (more on branching in a minute).
- ► If the lower bound set from scalarization strictly dominates that of parent node, then we resolve

- If we branch in objective space, child nodes should be resolved (more on branching in a minute).
- ► If the lower bound set from scalarization strictly dominates that of parent node, then we resolve

When should we branch?

Single objective branch and bound:

- Pick an active node
- ► If node is infeasible → prune it.
- Solve relaxation.
 - If solution is integral, update incumbent and prune.
 - If lower bound is worse than incumbent, prune.
 Else branch.

Bi–objective branch and bound

- Pick an active node
- ▶ If node is infeasible → prune it.
- Solve (bi-objective) relaxation
 - ► If solution(s) integral, update incumbent *set* and branch.
 - ► If subproblem contains no efficient solutions, prune. Else branch.

Integer branching – No–good inequalities

Let $\bar{x} \in \mathcal{X}$. Create one! child node with the inequality

$$\sum_{i:\bar{x}_i=1} (1 - x_i) + \sum_{i:\bar{x}_i=0} x_i \ge 1$$

Integer branching – No-good inequalities

Let $\bar{x} \in \mathcal{X}$. Create one! child node with the inequality

$$\sum_{i:\bar{x}_i=1} (1 - x_i) + \sum_{i:\bar{x}_i=0} x_i \ge 1$$

▶ Does only remove solution in decision space!

Integer branching – No-good inequalities

Let $\bar{x} \in \mathcal{X}$. Create one! child node with the inequality

$$\sum_{i:\bar{x}_i=1} (1 - x_i) + \sum_{i:\bar{x}_i=0} x_i \ge 1$$

- Does only remove solution in decision space!
- ► Might be many *equivalent solutions*

Integer branching - No-good inequalities

Let $\bar{x} \in \mathcal{X}$. Create one! child node with the inequality

$$\sum_{i:\bar{x}_i=1} (1 - x_i) + \sum_{i:\bar{x}_i=0} x_i \ge 1$$

- ▶ Does only remove solution in decision space!
- ► Might be many *equivalent solutions*
- ▶ Use Pareto branching!

Integer branching - No-good in objective space

Integer branching - No-good in objective space

► Create two new child nodes, one mapping to the north west of $C\bar{x}$ and one to the south east.

Integer branching - No-good in objective space

- ► Create two new child nodes, one mapping to the north west of $C\bar{x}$ and one to the south east.
- ► Generalize to *Pareto branching*

Pareto branching – Illustration

Generalized Pareto branching

Let η be an active branching node, and let $L(\eta)$ be a lower bound set of the node.

Generalized Pareto branching

- ▶ Let η be an active branching node, and let $L(\eta)$ be a lower bound set of the node.
- ▶ Let $\mathcal{N}^L(\eta)$ be a set of local Nadir points where

$$z^N \in L(\eta) + \mathbb{R}^2_{\geq}$$
.

Generalized Pareto branching

- ▶ Let η be an active branching node, and let $L(\eta)$ be a lower bound set of the node.
- ▶ Let $\mathcal{N}^L(\eta)$ be a set of local Nadir points where

$$z^N \in L(\eta) + \mathbb{R}^2_{\geq}.$$

▶ All non–dominated out comes in the sub–problem η maps to

$$\bigcup_{z \in \mathcal{N}^L(\eta)} \left(\{z\} - \mathbb{R}^2_{\geq} \right)$$

Extended Pareto branching – Illustration

► Tested different ways of comparing lower and upper bound sets

- ► Tested different ways of comparing lower and upper bound sets
 - 1. When stating the lower bound sets explicitly, LP based test worse than point–in–polytope test.

- ► Tested different ways of comparing lower and upper bound sets
 - 1. When stating the lower bound sets explicitly, LP based test worse than point–in–polytope test.
 - 2. When stating the lower bound sets implicitly, extended Pareto branching is not improving the performance

► Tested if a bi-objective approach to cutting planes works

- ► Tested if a bi-objective approach to cutting planes works
 - It does! The algorithm becomes much more robust and also faster.

- ► Tested if a bi-objective approach to cutting planes works
 - It does! The algorithm becomes much more robust and also faster.
- ► Tested an updating strategy of the lower bound set
 - Works very well. Lower bounds are worse, but we can check many more subproblems.

Compared with a two phase method

- Compared with a two phase method
 - Ranking based two phase method works very bad on our problems

- Compared with a two phase method
 - Ranking based two phase method works very bad on our problems
 - 2. PSM based two phase method works better, and even best on smaller problems

- Compared with a two phase method
 - Ranking based two phase method works very bad on our problems
 - PSM based two phase method works better, and even best on smaller problems
 - Our best algorithm, outperforms two phase methods on larger problems

- Compared with a two phase method
 - Ranking based two phase method works very bad on our problems
 - PSM based two phase method works better, and even best on smaller problems
 - Our best algorithm, outperforms two phase methods on larger problems

- Compared with a two phase method
 - Ranking based two phase method works very bad on our problems
 - 2. PSM based two phase method works better, and even best on smaller problems
 - Our best algorithm, outperforms two phase methods on larger problems

Questions ?