
Bound set based branch-and-cut algorithms
for bi-objective combinatorial optimization

problems

Sune Lauth Gadegaard1

Matthias Ehrgott 2 and Lars Relund Nielsen1

1Department of Economics and Business Economics, Aarhus University

2Department of Management Science, Lancaster University

June 24, 2016

CCORALAARHUS UNIVERSITY



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Outline

I Notation and definitions
I Branch and cut
I Bound sets
I Cutting plane algorithm
I Pruning
I Bound set update
I Branching
I Conclusions



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Notation

We want to solve a BOCO of the following form

min Cx
s.t.: Ax ≤ b

x ∈ {0, 1}n

For simplicity
I X := {x ∈ {0, 1}n : Ax ≤ b}.
I X := {x ∈ [0, 1]n : Ax ≤ b} ← The LP relaxation



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Orderings

Definition

For z1, z2 ∈ R2 we say that

z1 5 z2 ⇔ z1
i ≤ z2

i , for i = 1, 2

z1 ≤ z2 ⇔ z1 5 z2 and z1 6= z2

z1 < z2 ⇔ z1
i < z2

i , for i = 1, 2



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Cones

Definition

By R2
= we define the set

R2
= = {z ∈ R2 : z = 0}

Similarly for R2
≥ and R2

>.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Efficiency

Definition
x̂ ∈ X is called efficient if there does not exist another x ∈ X
such that

Cx ≤ Cx̂

The corresponding outcome vector, ẑ := Cx̂, is called
non–dominated.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Notation

XE set of all efficient solutions.

ZN CXE = {z ∈ R2 : z = Cx, x ∈ XE}

Z̄ upper bound set, Z̄ ⊆ CX .

L lower bound set.

η an active branching node.

X (η) feasible set of node η.

X (η) LP relaxed version of X (η).



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Branch & cut

Single objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If subproblem contains
no improving solutions,
prune. Else branch.

Bi–objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve (bi–objective)
relaxation

I If solution(s) integral,
update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Branch & cut

Single objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If subproblem contains
no improving solutions,
prune. Else branch.

Bi–objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve (bi–objective)
relaxation

I If solution(s) integral,
update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Branch & cut

Single objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If subproblem contains
no improving solutions,
prune. Else branch.

Bi–objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve (bi–objective)
relaxation

I If solution(s) integral,
update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Branch & cut

Single objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If subproblem contains
no improving solutions,
prune. Else branch.

Bi–objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve (bi–objective)
relaxation

I If solution(s) integral,
update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Branch & cut

Single objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If subproblem contains
no improving solutions,
prune. Else branch.

Bi–objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve (bi–objective)
relaxation

I If solution(s) integral,
update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Branch & cut

Single objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If subproblem contains
no improving solutions,
prune. Else branch.

Bi–objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve (bi–objective)
relaxation

I If solution(s) integral,
update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Cost 1

Cost 2

optimal

optim
al



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Cost 1

Cost 2

optimal

optim
al



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Cost 1

Cost 2

optimal

optim
al



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Cost 1

Cost 2

optimal

optim
al



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Cost 1

Cost 2

optimal

optim
al



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Cost 1

Cost 2

optimal

optim
al



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Lower bound set
I Lower bound on the non–dominated frontier

I A set of points ensuring, that all solutions lie above!
I Relax integrality constraints
Upper bound set
I Upper bound on the non–dominated frontier
I We only need to look for Pareto solutions below the upper

bound set
I Outcome vectors of feasible solutions
We only need to search between the upper and lower bound
sets



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Lower bound set
I Lower bound on the non–dominated frontier
I A set of points ensuring, that all solutions lie above!

I Relax integrality constraints
Upper bound set
I Upper bound on the non–dominated frontier
I We only need to look for Pareto solutions below the upper

bound set
I Outcome vectors of feasible solutions
We only need to search between the upper and lower bound
sets



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Lower bound set
I Lower bound on the non–dominated frontier
I A set of points ensuring, that all solutions lie above!
I Relax integrality constraints

Upper bound set
I Upper bound on the non–dominated frontier
I We only need to look for Pareto solutions below the upper

bound set
I Outcome vectors of feasible solutions
We only need to search between the upper and lower bound
sets



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Lower bound set
I Lower bound on the non–dominated frontier
I A set of points ensuring, that all solutions lie above!
I Relax integrality constraints
Upper bound set
I Upper bound on the non–dominated frontier

I We only need to look for Pareto solutions below the upper
bound set

I Outcome vectors of feasible solutions
We only need to search between the upper and lower bound
sets



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Lower bound set
I Lower bound on the non–dominated frontier
I A set of points ensuring, that all solutions lie above!
I Relax integrality constraints
Upper bound set
I Upper bound on the non–dominated frontier
I We only need to look for Pareto solutions below the upper

bound set

I Outcome vectors of feasible solutions
We only need to search between the upper and lower bound
sets



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Lower bound set
I Lower bound on the non–dominated frontier
I A set of points ensuring, that all solutions lie above!
I Relax integrality constraints
Upper bound set
I Upper bound on the non–dominated frontier
I We only need to look for Pareto solutions below the upper

bound set
I Outcome vectors of feasible solutions

We only need to search between the upper and lower bound
sets



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound sets

Lower bound set
I Lower bound on the non–dominated frontier
I A set of points ensuring, that all solutions lie above!
I Relax integrality constraints
Upper bound set
I Upper bound on the non–dominated frontier
I We only need to look for Pareto solutions below the upper

bound set
I Outcome vectors of feasible solutions
We only need to search between the upper and lower bound
sets



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Cutting planes

Single objective
I Strengthen the lower

bound
I Approximate the integer

hull of solutions in the
direction of the objective
function

Multi objective
I Strengthen the lower

bound set
I Approximate the integer

hull of solutions in the
direction of the objective
functions



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Modified NISE–algorithm

The NISE algorithm works by solving a series of problems of
the form

min λc1x + (1− λ)c2x
s.t.: Ax 5 b

0 5 x 5 1



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Modified NISE–algorithm

1. Update λ according to the NISE scheme
2. Solve the weighted sum LP and obtain optimal solution x∗

3. If a cut πTx 5 π0 exists add it, and go back to 2.
4. Else record c1x∗ and c2x∗, and go to 1.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

An example of cut effect

150 200 250 300 350 400

4,000

4,500

5,000

5,500



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming

I We assume Z̄ is initialized with the lexicographic
minimizers.

Theorem
A subproblem corresponding to branching node η contains no
efficient solutions, if the set

L(η) + R2
=

contains no local Nadir points.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming

I We assume Z̄ is initialized with the lexicographic
minimizers.

Theorem
A subproblem corresponding to branching node η contains no
efficient solutions, if the set

L(η) + R2
=

contains no local Nadir points.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming – An illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming – An illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming – An illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit PIP–test

How to check this?

I Solve the Bi–objective LP-relaxation of the node using NISE
algorithm

I Get the extreme points of the frontier

I Intersect with the bounding box from lex-min solutions
I Use a PIP algorithm



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit PIP–test

How to check this?
I Solve the Bi–objective LP-relaxation of the node using NISE

algorithm

I Get the extreme points of the frontier

I Intersect with the bounding box from lex-min solutions
I Use a PIP algorithm



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit PIP–test

How to check this?
I Solve the Bi–objective LP-relaxation of the node using NISE

algorithm
I Get the extreme points of the frontier

I Intersect with the bounding box from lex-min solutions
I Use a PIP algorithm



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit PIP–test

How to check this?
I Solve the Bi–objective LP-relaxation of the node using NISE

algorithm
I Get the extreme points of the frontier

I Intersect with the bounding box from lex-min solutions

I Use a PIP algorithm



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit PIP–test

How to check this?
I Solve the Bi–objective LP-relaxation of the node using NISE

algorithm
I Get the extreme points of the frontier

I Intersect with the bounding box from lex-min solutions
I Use a PIP algorithm



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit PIP–test

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit PIP–test

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound fathoming: Explicit LP–test

Perform the test using linear programming.
I zN is a local Nadir point
I {z1, . . . , zL} extreme points of (CX (η))N .

min s1 + s2 (1)

s.t.:
L

∑
l=1

zl
1λl − s1 ≤ zN

1 , (2)

L

∑
l=1

zl
2λl − s2 ≤ zN

2 , (3)

L

∑
l=1

λl = 1. s1, s2 ≥ 0. (4)



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Implicit LP–test

Implicit test using linear programming
I zN is a local Nadir point
I X LP relaxation

min s1 + s2

s.t.: c1x 5 zN
1 ,

c2x 5 zN
2 ,

x ∈ X .
s1, s2 ≥ 0.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Nodes are not dominated

Simple test to check if a node is not dominated:

Theorem
A branching node η cannot be pruned by previous theorem, if there
exits λ ∈ (0, 1) and z ∈ N (Z̄) such that

Cxλ ≤ z

where xλ ∈ arg min{(λc1 + (1− λ)c2)x : x ∈ X (η)}.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound set updating

I Solve scalarized LP–relaxation

min{(λc1 + (1− λ)c2)x : x ∈ X (η)}

before solving bi–objective LP–relaxation.

I Inherit lower bound set of parent node, and update!



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound set updating

I Solve scalarized LP–relaxation

min{(λc1 + (1− λ)c2)x : x ∈ X (η)}

before solving bi–objective LP–relaxation.
I Inherit lower bound set of parent node, and update!



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound set updating – Illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound set updating – Illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound set updating – Illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Bound set updating – Illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

When should we update/resolve

I If we branch in objective
space, child nodes should
be resolved (more on
branching in a minute).

I If the lower bound set
from scalarization strictly
dominates that of parent
node, then we resolve



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

When should we update/resolve

I If we branch in objective
space, child nodes should
be resolved (more on
branching in a minute).

I If the lower bound set
from scalarization strictly
dominates that of parent
node, then we resolve



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

When should we update/resolve

I If we branch in objective
space, child nodes should
be resolved (more on
branching in a minute).

I If the lower bound set
from scalarization strictly
dominates that of parent
node, then we resolve



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

When should we update/resolve

I If we branch in objective
space, child nodes should
be resolved (more on
branching in a minute).

I If the lower bound set
from scalarization strictly
dominates that of parent
node, then we resolve



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

When should we update/resolve

I If we branch in objective
space, child nodes should
be resolved (more on
branching in a minute).

I If the lower bound set
from scalarization strictly
dominates that of parent
node, then we resolve



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

When should we branch?

Single objective branch and
bound:
I Pick an active node
I If node is infeasible→

prune it.
I Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If lower bound is worse
than incumbent, prune.
Else branch.

Bi–objective branch and
bound
I Pick an active node
I If node is infeasible→

prune it.
I Solve (bi–objective)

relaxation
I If solution(s) integral,

update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Integer branching – No–good inequalities

Let x̄ ∈ X . Create one! child node with the inequality

∑
i:x̄i=1

(1− xi) + ∑
i:x̄i=0

xi ≥ 1

I Does only remove solution in decision space!
I Might be many equivalent solutions
I Use Pareto branching!



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Integer branching – No–good inequalities

Let x̄ ∈ X . Create one! child node with the inequality

∑
i:x̄i=1

(1− xi) + ∑
i:x̄i=0

xi ≥ 1

I Does only remove solution in decision space!

I Might be many equivalent solutions
I Use Pareto branching!



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Integer branching – No–good inequalities

Let x̄ ∈ X . Create one! child node with the inequality

∑
i:x̄i=1

(1− xi) + ∑
i:x̄i=0

xi ≥ 1

I Does only remove solution in decision space!
I Might be many equivalent solutions

I Use Pareto branching!



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Integer branching – No–good inequalities

Let x̄ ∈ X . Create one! child node with the inequality

∑
i:x̄i=1

(1− xi) + ∑
i:x̄i=0

xi ≥ 1

I Does only remove solution in decision space!
I Might be many equivalent solutions
I Use Pareto branching!



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Integer branching - No–good in objective space

Cx̄

I Create two new child nodes, one mapping to the north west
of Cx̄ and one to the south east.

I Generalize to Pareto branching



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Integer branching - No–good in objective space

Cx̄

I Create two new child nodes, one mapping to the north west
of Cx̄ and one to the south east.

I Generalize to Pareto branching



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Integer branching - No–good in objective space

Cx̄

I Create two new child nodes, one mapping to the north west
of Cx̄ and one to the south east.

I Generalize to Pareto branching



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Pareto branching – Illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Generalized Pareto branching

I Let η be an active branching node, and let L(η) be a lower
bound set of the node.

I Let N L(η) be a set of local Nadir points where

zN ∈ L(η) + R2
=.

I All non–dominated out comes in the sub–problem η maps to⋃
z∈N L(η)

(
{z} −R2

=

)



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Generalized Pareto branching

I Let η be an active branching node, and let L(η) be a lower
bound set of the node.

I Let N L(η) be a set of local Nadir points where

zN ∈ L(η) + R2
=.

I All non–dominated out comes in the sub–problem η maps to⋃
z∈N L(η)

(
{z} −R2

=

)



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Generalized Pareto branching

I Let η be an active branching node, and let L(η) be a lower
bound set of the node.

I Let N L(η) be a set of local Nadir points where

zN ∈ L(η) + R2
=.

I All non–dominated out comes in the sub–problem η maps to⋃
z∈N L(η)

(
{z} −R2

=

)



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Extended Pareto branching – Illustration

c2x

c1x



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Tested different ways of comparing lower and upper bound
sets

1. When stating the lower bound sets explicitly, LP based test
worse than point–in–polytope test.

2. When stating the lower bound sets implicitly, extended Pareto
branching is not improving the performance



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Tested different ways of comparing lower and upper bound
sets
1. When stating the lower bound sets explicitly, LP based test

worse than point–in–polytope test.

2. When stating the lower bound sets implicitly, extended Pareto
branching is not improving the performance



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Tested different ways of comparing lower and upper bound
sets
1. When stating the lower bound sets explicitly, LP based test

worse than point–in–polytope test.
2. When stating the lower bound sets implicitly, extended Pareto

branching is not improving the performance



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Tested if a bi–objective approach to cutting planes works

I It does! The algorithm becomes much more robust and also
faster.

I Tested an updating strategy of the lower bound set
I Works very well. Lower bounds are worse, but we can check

many more subproblems.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Tested if a bi–objective approach to cutting planes works
I It does! The algorithm becomes much more robust and also

faster.

I Tested an updating strategy of the lower bound set
I Works very well. Lower bounds are worse, but we can check

many more subproblems.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Tested if a bi–objective approach to cutting planes works
I It does! The algorithm becomes much more robust and also

faster.
I Tested an updating strategy of the lower bound set

I Works very well. Lower bounds are worse, but we can check
many more subproblems.



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Compared with a two phase
method

1. Ranking based two phase
method works very bad on
our problems

2. PSM based two phase
method works better, and
even best on smaller
problems

3. Our best algorithm,
outperforms two phase
methods on larger problems



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Compared with a two phase
method
1. Ranking based two phase

method works very bad on
our problems

2. PSM based two phase
method works better, and
even best on smaller
problems

3. Our best algorithm,
outperforms two phase
methods on larger problems



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Compared with a two phase
method
1. Ranking based two phase

method works very bad on
our problems

2. PSM based two phase
method works better, and
even best on smaller
problems

3. Our best algorithm,
outperforms two phase
methods on larger problems



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Compared with a two phase
method
1. Ranking based two phase

method works very bad on
our problems

2. PSM based two phase
method works better, and
even best on smaller
problems

3. Our best algorithm,
outperforms two phase
methods on larger problems



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Compared with a two phase
method
1. Ranking based two phase

method works very bad on
our problems

2. PSM based two phase
method works better, and
even best on smaller
problems

3. Our best algorithm,
outperforms two phase
methods on larger problems

0 2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

Number of binary variables

Ti
m

e
in

se
co

nd
s

B&C
TwoP-R
TwoP-PSM



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Results

I Compared with a two phase
method
1. Ranking based two phase

method works very bad on
our problems

2. PSM based two phase
method works better, and
even best on smaller
problems

3. Our best algorithm,
outperforms two phase
methods on larger problems

0 2,000 4,000 6,000 8,000

0

20

40

60

80

100

Number of binary variables

Su
cc

es
s

ra
ti

o

B&C
TwoP-R
TwoP-PSM



Outline Preliminaries Branch & cut Bound sets Cutting planes Pruning Bound update Branching Conclusions

Questions
?


	Outline
	Preliminaries
	Notation

	Branch & cut
	Bound sets
	Motivation

	Cutting planes
	NISE

	Pruning
	Bound fathoming
	Checking PIP-test
	Checking LP-test

	Bound update
	Updating
	When should we update

	Branching
	Start of branching
	Integer branching
	Generalized Pareto branching

	Conclusions
	Results


