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Notation

We want to solve a BOCO of the following form

min Cx
s.t.: Ax ≤ b

x ∈ {0, 1}n

For simplicity
I X := {x ∈ {0, 1}n : Ax ≤ b}.
I X := {x ∈ [0, 1]n : Ax ≤ b} ← The LP relaxation
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Orderings

Definition

For z1, z2 ∈ R2 we say that

z1 5 z2 ⇔ z1
i ≤ z2

i , for i = 1, 2

z1 ≤ z2 ⇔ z1 5 z2 and z1 6= z2

z1 < z2 ⇔ z1
i < z2

i , for i = 1, 2
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Cones

Definition

By R2
= we define the set

R2
= = {z ∈ R2 : z = 0}

Similarly for R2
≥ and R2

>.
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Efficiency

Definition
x̂ ∈ X is called efficient if there does not exist another x ∈ X
such that

Cx ≤ Cx̂

The corresponding outcome vector, ẑ := Cx̂, is called
non–dominated.
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Notation

XE set of all efficient solutions.

ZN CXE = {z ∈ R2 : z = Cx, x ∈ XE}

Z̄ upper bound set, Z̄ ⊆ CX .

L lower bound set.

η an active branching node.

X (η) feasible set of node η.

X (η) LP relaxed version of X (η).
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Branch & cut

Single objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If subproblem contains
no improving solutions,
prune. Else branch.

Bi–objective branch and
bound:

1. Pick an active node

2. If node is infeasible→
prune it.

3. Add cuts if necessary

4. Solve (bi–objective)
relaxation

I If solution(s) integral,
update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.
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Bound sets
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Bound sets

Lower bound set
I Lower bound on the non–dominated frontier

I A set of points ensuring, that all solutions lie above!
I Relax integrality constraints
Upper bound set
I Upper bound on the non–dominated frontier
I We only need to look for Pareto solutions below the upper

bound set
I Outcome vectors of feasible solutions
We only need to search between the upper and lower bound
sets
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Cutting planes

Single objective
I Strengthen the lower

bound
I Approximate the integer

hull of solutions in the
direction of the objective
function

Multi objective
I Strengthen the lower

bound set
I Approximate the integer

hull of solutions in the
direction of the objective
functions
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Modified NISE–algorithm

The NISE algorithm works by solving a series of problems of
the form

min λc1x + (1− λ)c2x
s.t.: Ax 5 b

0 5 x 5 1
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Modified NISE–algorithm

1. Update λ according to the NISE scheme
2. Solve the weighted sum LP and obtain optimal solution x∗

3. If a cut πTx 5 π0 exists add it, and go back to 2.
4. Else record c1x∗ and c2x∗, and go to 1.
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An example of cut effect

150 200 250 300 350 400

4,000

4,500

5,000

5,500
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Bound fathoming

I We assume Z̄ is initialized with the lexicographic
minimizers.

Theorem
A subproblem corresponding to branching node η contains no
efficient solutions, if the set

L(η) + R2
=

contains no local Nadir points.
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Bound fathoming – An illustration

c2x

c1x
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Bound fathoming: Explicit PIP–test

How to check this?

I Solve the Bi–objective LP-relaxation of the node using NISE
algorithm

I Get the extreme points of the frontier

I Intersect with the bounding box from lex-min solutions
I Use a PIP algorithm
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Bound fathoming: Explicit LP–test

Perform the test using linear programming.
I zN is a local Nadir point
I {z1, . . . , zL} extreme points of (CX (η))N .

min s1 + s2 (1)

s.t.:
L

∑
l=1

zl
1λl − s1 ≤ zN

1 , (2)

L

∑
l=1

zl
2λl − s2 ≤ zN

2 , (3)

L

∑
l=1

λl = 1. s1, s2 ≥ 0. (4)
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Implicit LP–test

Implicit test using linear programming
I zN is a local Nadir point
I X LP relaxation

min s1 + s2

s.t.: c1x 5 zN
1 ,

c2x 5 zN
2 ,

x ∈ X .
s1, s2 ≥ 0.
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Nodes are not dominated

Simple test to check if a node is not dominated:

Theorem
A branching node η cannot be pruned by previous theorem, if there
exits λ ∈ (0, 1) and z ∈ N (Z̄) such that

Cxλ ≤ z

where xλ ∈ arg min{(λc1 + (1− λ)c2)x : x ∈ X (η)}.
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Bound set updating

I Solve scalarized LP–relaxation

min{(λc1 + (1− λ)c2)x : x ∈ X (η)}

before solving bi–objective LP–relaxation.

I Inherit lower bound set of parent node, and update!
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Bound set updating – Illustration

c2x

c1x
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When should we update/resolve

I If we branch in objective
space, child nodes should
be resolved (more on
branching in a minute).

I If the lower bound set
from scalarization strictly
dominates that of parent
node, then we resolve
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When should we branch?

Single objective branch and
bound:
I Pick an active node
I If node is infeasible→

prune it.
I Solve relaxation.

I If solution is integral,
update incumbent and
prune.

I If lower bound is worse
than incumbent, prune.
Else branch.

Bi–objective branch and
bound
I Pick an active node
I If node is infeasible→

prune it.
I Solve (bi–objective)

relaxation
I If solution(s) integral,

update incumbent set and
branch.

I If subproblem contains
no efficient solutions,
prune. Else branch.
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Integer branching – No–good inequalities

Let x̄ ∈ X . Create one! child node with the inequality

∑
i:x̄i=1

(1− xi) + ∑
i:x̄i=0

xi ≥ 1

I Does only remove solution in decision space!
I Might be many equivalent solutions
I Use Pareto branching!
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Integer branching - No–good in objective space

Cx̄

I Create two new child nodes, one mapping to the north west
of Cx̄ and one to the south east.

I Generalize to Pareto branching
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Pareto branching – Illustration

c2x

c1x
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Generalized Pareto branching

I Let η be an active branching node, and let L(η) be a lower
bound set of the node.

I Let N L(η) be a set of local Nadir points where

zN ∈ L(η) + R2
=.

I All non–dominated out comes in the sub–problem η maps to⋃
z∈N L(η)

(
{z} −R2

=

)
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Extended Pareto branching – Illustration

c2x

c1x
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Results

I Tested different ways of comparing lower and upper bound
sets

1. When stating the lower bound sets explicitly, LP based test
worse than point–in–polytope test.

2. When stating the lower bound sets implicitly, extended Pareto
branching is not improving the performance
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Results

I Tested if a bi–objective approach to cutting planes works

I It does! The algorithm becomes much more robust and also
faster.

I Tested an updating strategy of the lower bound set
I Works very well. Lower bounds are worse, but we can check

many more subproblems.
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Results

I Compared with a two phase
method

1. Ranking based two phase
method works very bad on
our problems

2. PSM based two phase
method works better, and
even best on smaller
problems

3. Our best algorithm,
outperforms two phase
methods on larger problems
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Questions
?
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