Multi-criteria linear programming with reverse search

Sebastian Schenker

TU Berlin / Zuse Institute Berlin

12th September 2014

Outline

Preliminaries

2 Reverse search

3 Enumeration of efficient solutions without book-keeping

Multi-criteria linear problem

• Given $C \in \mathbb{R}^k$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$\min / \max Cx$$
s.t. $Ax = b$

$$x \ge 0$$

Preliminaries

- Basis B is set of m column indices of A with corresponding regular matrix $(A_{B(1)}A_{B(2)}\dots A_{B(m)})$
- Co-basis N set of non-basic indices
- Pivoting to adjacent basic feasible solution by pivoting non-basic index $j \in N$ into B
- $x^* \in \mathcal{X}$ efficient solution if and only if there exists $\lambda \in \mathbb{R}_+^k$ such that x^* is optimal solution to min $/\max \lambda^T Cx$ s.t. $x \in \mathcal{X}$

Bi-criteria linear program with 2^{n-1} non-dominated vertices based on deformed cube

$$\begin{aligned} \max \left(x_{n-1} \,,\, x_n \right) \\ \text{s.t. } & 0 \leq x_1 \leq 1, \\ & \epsilon x_1 \leq x_2 \leq 1 - \epsilon x_1, \\ & \epsilon (x_i - \gamma x_{i-1}) \leq x_{i+1} \leq 1 - \epsilon (x_i - \gamma x_{i-1}) \\ & \text{for } & 2 \leq i \leq n, \; \epsilon < 0.5, \; \gamma \leq 0.25\epsilon. \end{aligned}$$

Source: "Deformed products and maximal shadows of polytopes" by Amenta, Ziegler

Conventional graph searches

```
initialize data structure S
while S is not empty do
  v ← S.pop();
  if v is not labeled yet then
       label v;
      for all w adjacent to v do
            S.push(w)
      end for
  end if
end while
```

▷ Depth-first-search

- Graph searches use datastructure (e.g. stack, priority queue) to keep track of already visited nodes
- Number of elements in data structure might be huge

Reverse search

- Coined by Avis and Fukuda: "Reverse search for enumeration"
- Enumeration of vertices of polyhedra without book-keeping
- Consider paths generated by simplex from any vertex towards optimal vertex
- Paths yield a tree that can be traversed

Traversing the reverse search tree

- Let x^* be currently considered vertex with corresponding basis B^*
- Let $N = \{N(1), \dots, N(n-m)\}$ be set of non-basic indices
- Simulate pivoting N(1) into B^* yielding B
- Check whether pivot rule w.r.t. objective c pivots from B to B* if yes: pivot N(1) into B* if no: neglect N(1) and check for N(2)
- apply recursively

Pseudo-code for reverse search

```
B \leftarrow B^*, N \leftarrow N^*, i \leftarrow 1;
repeat
    while j \leq |N^*| do
        v \leftarrow N(i);
        if reverse (B, v, u) then;
            pivot(B, v, u);
            if lexmin(B,0) then
                 output current vertex;
            end if
            i = 1;
        else
            i \leftarrow j + 1;
        end if
    end while
    selectpivot(B, r, i);
    pivot(B, r, N(j));
   i \leftarrow i + 1;
until i > |N^*| \wedge B == B^*
```

Enumerate efficient solutions without book-keeping

- Efficient solutions are connected
- Goal: Use reverse search approach for enumerating efficient solutions

Phase 1

• Compute efficient solution x^* that acts as root node

- Which scalarisation of c_1, \ldots, c_k shall be used as objective for reverse search?
- Problem: arbitrary but fixed (scalarized) objective might connect efficient solution with non-efficient solution

The path of the parametric simplex

- Let x^* be efficient solution computed in Phase 1
- Let c^* be objective which optimizes x^*
- Let x be another efficient solution
- Let c be objective which optimizes x
- Consider $\bar{c}(\lambda) = \lambda c^* + (1 \lambda)c$ for $\lambda \in [0, 1]$

• Path taken by $\bar{c}(\lambda)$ connects only efficient solutions with x^* as terminal solution

Idea: Change considered objective after each step

- Consider $\bar{c}(\lambda) = \lambda c^* + (1 \lambda)c$ until first break-point
 - ▶ If $x \neq x^*$, then x is optimal for $\bar{c}(\lambda)$ for $\lambda \in [0, \bar{\lambda}]$ with $\bar{\lambda} < 1$
 - Some \hat{x} becomes optimal for $\bar{c}(\lambda)$ for $\lambda > \bar{\lambda}$
 - Let \hat{c} be objective for which \hat{x} is optimal
- Change considered objective to $\lambda c^* + (1 \lambda)\hat{c}$
- x^* remains terminal solution for $\lambda = 1$
- In each step parametric objective can be computed from tableau of current basic feasible solution and root tableau

Correctness and completeness of the algorithm

- Correctness: Algorithm visits only efficient solutions. √
- Completeness: Can cycles occur?

Completeness of the algorithm

- Weight space: $W(\bar{y}) = \{\lambda \in \mathbb{R}_+^k : \lambda^T \bar{y} \le \lambda^T y \text{ for } y \in \mathcal{Y}\}$
- $W(\bar{y})$ convex
- Apply separation theorem for convex sets

Thanks for your attention.