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Multiple Objective Programming

Problem (Multiple Objective Programming Problem)

Let fi : X ⊆ Rn → R, i ∈ {1, . . . , p} =: [p].

(MOP) min
x∈X

f (x) := (f1(x), . . . , fp(x))

f1(x)

f2(x)
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Optimality Concept

Definition

x? ∈ X efficient :⇔ 6 ∃x ∈ X : f (x) ≤ f (x?)
:⇔ 6 ∃x ∈ X ∀i ∈ [p] : fi (x) ≤ fi (x

?) ∧ f (x) 6= f (x?)
y? ∈ Y = f (X ) nondominated :⇔ y? = f (x?), x? efficient

XE : Set of efficient solutions
YN : Set of nondominated points

y I : Ideal point
yN : Nadir point

f1(x)

f2(x)

y I

yN
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Motivation

General goal:
Compute the nondominated set YN (and present it to the decision maker)!

But: YN may

. . . be very large in practice,

. . . consist of infinitely many points,

. . . grow exponentially in the input size of the problem.

 compute representation of YN , i. e., an ap-
propriate substitute for the nondominated set.
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Representative System

Definition (Representative System)

For some MOP with outcome set Y , we call a finite approximation
Rep ⊆ Y representative system and its elements representative points.

What is a “good” representative system?
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Quality Measures

Definition (Sayin 2000, Ruzika 2007)

a) Coverage error: max
y∈YN

min
z∈Rep

‖z − y‖.

b) Uniformity: min
z,ẑ∈Rep
z 6=ẑ

‖z − ẑ‖.

c) Cardinality: |Rep|.
d) Representation error: max

z∈Rep
min
y∈YN

‖y − z‖.
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Some Literature using Boxes for MOPs

Boxes / rectangles / cuboids . . . are frequently used in multiple objective
programming:

Laumans et al. (2006), Dhaenens et al. (2010), Kirlik and Sayin
(2014): exact nondominated set by fixing one objective and projecting
the others; grid-based structure; ε-constraint method.

Dächert and Klamroth (2013): Improvement of splitting of boxes +
generic algorithm; ε-constraint or Tchebycheff method

Boland et al. (2014): Partition of projected search space by L-shapes
and rectangles; 3-objective integer problems; experimental quality
assessment.

+ several other approaches, e. g. in evolutionary algorithms.
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Our Contribution

Goal: Simple algorithm for computing a representative system
I with desired coverage error
I for MOPs with p = 3 objectives
I with the capability of relating the run time of the algorithm to the

quality of the representative system.

Idea: Extending the Box-Algorithm of [Hamacher et al. 2007] to the
case of three objective functions

Hamacher, Pedersen, Ruzika
Finding representative sytems for discrete bicriterion optimization
problems
Operations Research Letters 35(3): 336-344, 2007
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Short Review of the Box-Algorithm (2D)

f1

f 2
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f1

f 2

yI

yN
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Box-Algorithm for MOPs with Three Objectives
Initialization

(MOP) min (f1(x), f2(x), f3(x))

s. t. x ∈ X ⊆ Rn

Definition

Let `, u ∈ R3 with ` 5 u. We refer to the cuboid

B(`, u) := `+ R3
= ∩ u − R3

= = {y ∈ R3|` 5 y 5 u}

as the box defined by ` and u.

Lemma

Let `0 ∈ y I − R3
= and let u0 ∈ yN + R3

=. Then YN ⊆ B(`0, u0).
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Update Step

Definition

Let `, u ∈ R3, ` 5 u and let εi = `i + ui−`i
2 for i = 1, 2, 3. Then, we define

the lexicographic ε-constraint scalarizations with lower bounds
(P1

ε1,ε2
), (P2

ε1,ε3
), and (P3

ε2,ε3
) as

(P1
ε1,ε2

) lex min (f3(x), f2(x), f1(x))

s. t. x ∈ X

`1 ≤ f1(x) ≤ ε1

`2 ≤ f2(x) ≤ ε2

`3 ≤ f3(x) (≤ u3)

 =: f (x) ∈ B(`, u)(ε1,ε2,u3)

and, analogously,

(P2
ε1,ε3

) lexmin (f2(x), f1(x), f3(x))

s. t. x ∈ X

f (x) ∈ B(`, u)(ε1,u2,ε3)

(P3
ε2,ε3

) lexmin (f1(x), f3(x), f2(x))

s. t. x ∈ X

f (x) ∈ B(`, u)(u1,ε2,ε3).
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Update Step

Proposition

Let z∗ be the image under f of an optimal solution of (P1
ε1,ε2

). Then,
there does not exist a y ∈ YN \ {z∗} such that

y ∈ B(z∗, u) ∪ B
(
`, (ε1, ε2, z

∗
3 )>
)
\ B

(
(`1, z

∗
2 , z
∗
3 )>, (z∗1 , ε2, z

∗
3 )>
)

Proof.

B(z∗, u) is dominated by z∗

A nondominated point in
B
(
`, (ε1, ε2, z

∗
3 )>
)
\ B

(
(`1, z

∗
2 , z
∗
3 )>, (z∗1 , ε2, z

∗
3 )>
)

contradicts
optimality of z∗ for (P1

ε1,ε2
)
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Update Step

Example:

Consider an initial box with ` = 0 and u = (12, 10, 10)>.
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Update Step

Example:
Solve (P1

ε1,ε2
) with ε1 = 6 and ε2 = 5.
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Update Step

Example:

Optimal solution with image z∗ = (2, 3, 4)>

 Cut-off
Regions (see first proposition): B

(
(2, 3, 4)>, (12, 10, 10)>

)
und B

(
0, (6, 5, 4)>

)
\ B

(
(0, 3, 4)>, (2, 5, 4)>

)
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Update Step

Definition

Let `, u ∈ R3, ` 5 u and let εi = `i + ui−`i
2 for i = 1, 2, 3. Suppose (P1

ε1,ε2
)

is solved. Then, the four quarters of the current box B(`, u) are defined as

Q1,1 := B

`,
ε1

ε2

u3

 , Q1,2 := B

 ε1

`2

`3

 ,

u1

ε2

u3

 ,

Q1,3 := B

ε1

ε2

`3

 , u

 , Q1,4 := B

`1

ε2

`3

 ,

ε1

u2

u3

 .
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Definition

Let `, u ∈ R3, ` 5 u and let εi = `i + ui−`i
2 for i = 1, 2, 3. Suppose (P1

ε1,ε2
)

is solved and let z∗ ∈ R3 denote the image under f of an optimal solution
for (P1

ε1,ε2
). Then, the subdivision of the current box B(`, u) consists of

the boxes

B1,1 := B

`1

z∗2
z∗3

 ,

z∗1
ε2

u3

 , B1,2 := B

`1

`2

z∗3

 ,

ε1

z∗2
u3



B1,3 := B

ε1

`2

`3

 ,

u1

ε2

z∗3

 , B1,4 := B

ε1

`2

z∗3

 ,

u1

z∗2
u3



B1,5 := B

ε1

ε2

`3

 ,

u1

u2

z∗3

 , B1,6 := B

`1

ε2

`3

 ,

ε1

u2

z∗3



B1,7 := B

`1

ε2

z∗3

 ,

z∗1
u2

u3
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Properties of the Subdivision

Lemma

YN ∩ B(`, u) ⊆
7⋃

i=1

B1,i

Proof.

Follows directly from previous proposition.

Observation

Vol(B1,i ) ≤ 1

4
· Vol(B(`, u))

Moreover, for each of the quarters Q1,1, Q1,2 and Q1,3, we can find two
pairs of boxes for which the combined volume fulfills this formula.
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Properties of the Subdivision

Lemma

7∑
i=1

Vol(B1,i ) ≤ 3

4
· Vol(B(`, u))

Proof.

B lex := B
(
`, (ε1, ε2, z

∗
3 )>

)
and Bdom := B (z∗, u) are cut off with

Vol(B lex) + Vol(Bdom)

≥ Vol(B lex) + Vol
(
B
(
(ε1, ε2, z

∗
3 )>, u

))
= Vol

(
B lex + (ε1 − `1, ε2 − `2, 0)>

)
+ Vol

(
B
(
(ε1, ε2, z

∗
3 )>, u

))
= Vol

(
B
(
(ε1, ε2, `3)>, (u1, u2, z

∗
3 )>

))
+ Vol

(
B
(
(ε1, ε2, z

∗
3 )>, u

))
= Vol

(
B
(
(ε1, ε2, `3)>, u

))
= Vol(Q1,3) =

1

4
Vol(B(`, u))
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Correctness

Algorithm 1 Box-Algorithm for three objectives

Require: MOP with three objectives, δC > 0
Ensure: Rep representative system with coverage error at most δC

1: S := {InitialBox()}
2: while S 6= ∅ do
3: B := B(`, u) := SelectBox(S)
4: if ‖`− u‖∞ ≤ δC then
5: Use (P1

u1,u2
) to search for a representative point in B

6: else
7: Determine the 2 longest edges of B
8: Solve (P j

.,.), j ∈ {1, 2, 3}, dividing these 2 edges
9: Add optimal outcome z∗ to Rep

10: for i ∈ {1, . . . , 7} do
11: Add B j ,i to S
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Correctness

Theorem

Algorithm 1 terminates in finitely many steps. It outputs a collection of
boxes containing all nondominated points. The representative system Rep
has a coverage error of at most δC (w. r. t. ‖ · ‖∞). More precisely, the

algorithm performs at most O

((
L

δC

)2·log2(7)
)

many iterations, where L

is the distance of the corner points of the initial box B(`0, u0), i.e.,
L := ‖`0 − u0‖∞.

Proof.

see our paper . . .
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Correctness

Corollary

Let Rep be a representative system with coverage error less than or equal
to δC (w. r. t. ‖ · ‖∞) and let RepN denote all points of Rep which are not
dominated by any other point in this set. Then it is

YN ⊆
(
RepN − (δC , δC , δC )>

)
+ R3

=.

Proof.

Let y ∈ YN .

Coverage property: ∃z ∈ Rep with ‖y − z‖∞ ≤ δC which implies

z − (δC , δC , δC )> 5 y .

If z 6∈ RepN , then there exists ẑ ∈ RepN with ẑ ≤ z .
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Selection Rule
max-dist selection rule

Corollary

Let SelectBox() always select the box with largest corner point
distance. Suppose the algorithm is aborted prematurely after Γ ≥ 1
iterations and for all remaining boxes B ∈ S, we additionally execute a
“completion step”. Then, the representative system Rep has a coverage
error of at most L · 2−b(log7(6Γ+1))/2c, where L equals the corner point distance
‖`0 − u0‖∞ of the initial box B(`0, u0).
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Selection Rule
nondominated selection rule

Problem: Generation of (in a later step) dominated solutions.

Idea: Do not select the box with maximal distance, but the
box which cannot be “dominated” in a future iteration.

Store the list of unexplored boxes in analogy to a tree, where
we perform a depth first search (DFS).

Result: By appropriately cutting off dominated parts of
(partial) dominated boxes during the algorithm, we obtain a
representative system Rep = RepN fulfilling the desired
accuracy.
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Bounding the Representation Error

Rep ⊆ YN is not guaranteed in the algorithm

The representation error max
z∈Rep

min
y∈YN

‖z − y‖ can be positive.

Suppose representative system Rep has coverage error at most δC

w. r. t. some norm ‖ · ‖.

Definition

Let B be the last subdivision (covering the whole set YN) obtained from
Algorithm 1. Let z ∈ Rep and B(z) ⊆ B be the set containing either the
box for which z was computed or the corresponding child boxes contained
in the corresponding quarter of the box for which z was computed. Then,
we define Bz :=

{
B ∈ B : B ∩

(
z − R3

≥
)
6= ∅ ∧ B 6∈ B(z)

}
. If Bz 6= ∅, we

call z a critical representative point.
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Bounding the Representation Error

Lemma

For MOP, let (Rep,B) be the output of Algorithm 1 and z ∈ Rep be some
representative point. Then, it holds

(Bz = ∅) =⇒ (z ∈ YN)

Proposition

max
z∈Rep

min
y∈YN

‖z − y‖

≤ min

 max
z∈Rep

max
B(`,u)∈Bz

‖`− z‖, max
z∈Rep
Bz 6=∅

max
ẑ∈BRep

δC
(z−R3

≥)
‖z − ẑ‖+ δC


where BRep

δC
(z − R3

≥) :=
{
y ∈ Rep : ∃ỹ ∈ z − R3

≥ ∧ ‖y − ỹ‖ ≤ δC
}

and
max

B(`,u)∈Bz
‖`− z‖ returns the value 0 if Bz = ∅.
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Conclusion

Box algorithm for computing representative sets for MOPs with p = 3
objectives

easy to implement

with desired coverage error

with the capability of relating the run time of the algorithm to the
quality of the representative system

with different selection rules

representative points are not necessarily nondominated but bound on
representation error

Thank you for your attention!
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