A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions

> Tobias Kuhn (Coauthor: Stefan Ruzika)

Department of Mathematics University of Kaiserslautern

Recent Advances in Multi-Objective Optimization Lancaster, June 24, 2016

Thanks to . . .

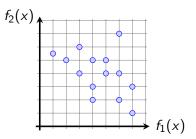
Bundesministerium für Bildung und Forschung

We gratefully acknowledge support by Federal Ministry of Education and Research, Germany, BMBF, project "Robuste Evakuierung und zivile Sicherheitsplanung (RobEZiS)", grant number 13N13198.

Multiple Objective Programming

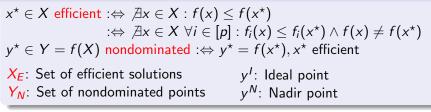
Problem (Multiple Objective Programming Problem) Let $f_i : X \subseteq \mathbb{R}^n \to \mathbb{R}, i \in \{1, \dots, p\} =: [p].$

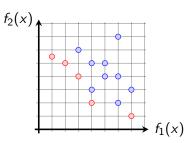
(MOP)
$$\min_{x \in X} f(x) := (f_1(x), \dots, f_p(x))$$



Optimality Concept

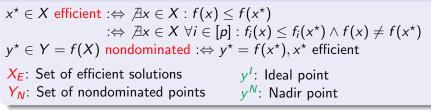
Definition

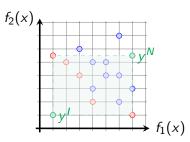




Optimality Concept

Definition





General goal:

Compute the nondominated set Y_N (and present it to the decision maker)!

General goal:

Compute the nondominated set Y_N (and present it to the decision maker)!

But: Y_N may

• ... be very large in practice,

General goal:

Compute the nondominated set Y_N (and present it to the decision maker)!

But: Y_N may

- ... be very large in practice,
- ... consist of *infinitely many points*,

General goal:

Compute the nondominated set Y_N (and present it to the decision maker)!

But: Y_N may

- ... be very large in practice,
- ... consist of *infinitely many points*,
- ... grow exponentially in the input size of the problem.

General goal:

Compute the nondominated set Y_N (and present it to the decision maker)!

But: Y_N may

- ... be very large in practice,
- ... consist of *infinitely many points*,
- ... grow exponentially in the input size of the problem.

 \rightsquigarrow compute *representation* of Y_N , i.e., an appropriate substitute for the nondominated set.

Representative System

Definition (Representative System)

For some MOP with outcome set Y, we call a finite approximation $Rep \subseteq Y$ representative system and its elements representative points.

Representative System

Definition (Representative System)

For some MOP with outcome set Y, we call a finite approximation $Rep \subseteq Y$ representative system and its elements representative points.

What is a "good" representative system?

Definition (Sayin 2000, Ruzika 2007)

a) Coverage error:
$$\max_{y \in Y_N} \min_{z \in Rep} ||z - y||$$
.

Definition (Sayin 2000, Ruzika 2007) a) Coverage error: $\max_{y \in Y_N} \min_{z \in Rep} ||z - y||$. b) Uniformity: $\min_{\substack{z, \hat{z} \in Rep \\ z \neq \hat{z}}} ||z - \hat{z}||$.

Definition (Sayin 2000, Ruzika 2007)

a) Coverage error:
$$\max_{y \in Y_N} \min_{z \in Rep} ||z - y||$$
.

b) Uniformity:
$$\min_{\substack{z,\hat{z}\in Rep\\z\neq \hat{z}}} ||z-\hat{z}||.$$

Definition (Sayin 2000, Ruzika 2007) a) Coverage error: $\max_{y \in Y_N} \min_{z \in Rep} ||z - y||$. b) Uniformity: $\min_{\substack{z, \hat{z} \in Rep \\ z \neq \hat{z}}} ||z - \hat{z}||$. c) Cardinality: |Rep|. d) Representation error: $\max_{z \in Rep} \min_{y \in Y_N} ||y - z||$.

Some Literature using Boxes for MOPs

Boxes / rectangles / cuboids \ldots are frequently used in multiple objective programming:

- Laumans et al. (2006), Dhaenens et al. (2010), Kirlik and Sayin (2014): exact nondominated set by fixing one objective and projecting the others; grid-based structure; ε-constraint method.
- Dächert and Klamroth (2013): Improvement of splitting of boxes + generic algorithm; ε -constraint or Tchebycheff method
- Boland et al. (2014): Partition of projected search space by L-shapes and rectangles; 3-objective integer problems; experimental quality assessment.
- + several other approaches, e.g. in evolutionary algorithms.

Our Contribution

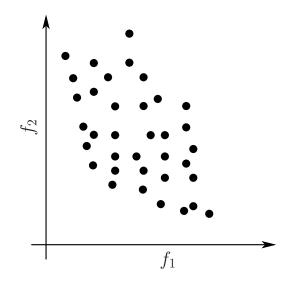
• Goal: Simple algorithm for computing a representative system

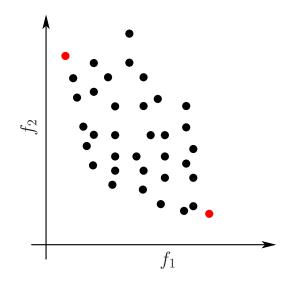
- with desired coverage error
- for MOPs with p = 3 objectives
- with the capability of relating the run time of the algorithm to the quality of the representative system.

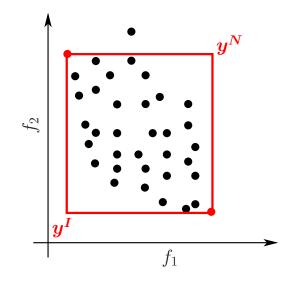
Our Contribution

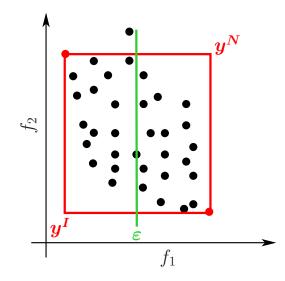
• Goal: Simple algorithm for computing a representative system

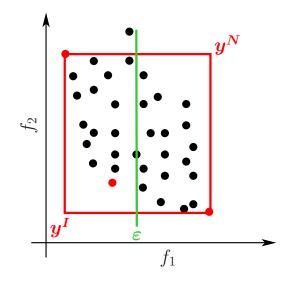
- with desired coverage error
- for MOPs with p = 3 objectives
- with the capability of relating the run time of the algorithm to the quality of the representative system.
- Idea: Extending the Box-Algorithm of [Hamacher et al. 2007] to the case of three objective functions

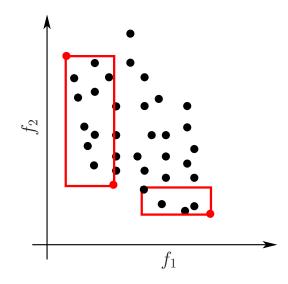












Box-Algorithm for MOPs with Three Objectives

(MOP) min
$$(f_1(x), f_2(x), f_3(x))$$

s.t. $x \in X \subseteq \mathbb{R}^n$

Box-Algorithm for MOPs with Three Objectives

(MOP) min
$$(f_1(x), f_2(x), f_3(x))$$

s.t. $x \in X \subseteq \mathbb{R}^n$

Definition

Let $\ell, u \in \mathbb{R}^3$ with $\ell \leq u$. We refer to the cuboid

$$\boldsymbol{B}(\ell,\boldsymbol{u}) \coloneqq \ell + \mathbb{R}^3_{\geq} \cap \boldsymbol{u} - \mathbb{R}^3_{\geq} = \{ \boldsymbol{y} \in \mathbb{R}^3 | \ell \leq \boldsymbol{y} \leq \boldsymbol{u} \}$$

as the box defined by ℓ and u.

Box-Algorithm for MOPs with Three Objectives

(MOP) min
$$(f_1(x), f_2(x), f_3(x))$$

s.t. $x \in X \subseteq \mathbb{R}^n$

Definition

Let $\ell, u \in \mathbb{R}^3$ with $\ell \leq u$. We refer to the cuboid

$$\boldsymbol{B}(\ell,\boldsymbol{u}) \coloneqq \ell + \mathbb{R}^3_{\geq} \cap \boldsymbol{u} - \mathbb{R}^3_{\geq} = \{ \boldsymbol{y} \in \mathbb{R}^3 | \ell \leq \boldsymbol{y} \leq \boldsymbol{u} \}$$

as the box defined by ℓ and u.

Lemma

Let
$$\ell^0 \in y' - \mathbb{R}^3_{\geq}$$
 and let $u^0 \in y^N + \mathbb{R}^3_{\geq}$. Then $Y_N \subseteq B(\ell^0, u^0)$.

Definition

Let $\ell, u \in \mathbb{R}^3, \ell \leq u$ and let $\varepsilon_i = \ell_i + \frac{u_i - \ell_i}{2}$ for i = 1, 2, 3. Then, we define the lexicographic ε -constraint scalarizations with lower bounds $(P_{\varepsilon_1,\varepsilon_2}^1), (P_{\varepsilon_1,\varepsilon_2}^2), \text{ and } (P_{\varepsilon_2,\varepsilon_2}^3)$ as $(P_{\varepsilon_1,\varepsilon_2}^1)$ lex min $(f_3(x), f_2(x), f_1(x))$ s.t. $x \in X$ $\left.\begin{array}{l}\ell_1 \leq f_1(x) \leq \varepsilon_1\\ \ell_2 \leq f_2(x) \leq \varepsilon_2\\ \ell_3 \leq f_3(x) \left(\leq u_3\right)\end{array}\right\} =: f(x) \in B(\ell, u)^{(\varepsilon_1, \varepsilon_2, u_3)}$

Definition

Let $\ell, u \in \mathbb{R}^3, \ell \leq u$ and let $\varepsilon_i = \ell_i + \frac{u_i - \ell_i}{2}$ for i = 1, 2, 3. Then, we define the lexicographic ε -constraint scalarizations with lower bounds $(P^1_{\varepsilon_1,\varepsilon_2}), (P^2_{\varepsilon_1,\varepsilon_2})$, and $(P^3_{\varepsilon_2,\varepsilon_2})$ as (P_{e_1,e_2}^1) lex min $(f_3(x), f_2(x), f_1(x))$ s.t. $x \in X$ $\left.\begin{array}{l}\ell_1 \leq f_1(x) \leq \varepsilon_1\\ \ell_2 \leq f_2(x) \leq \varepsilon_2\\ \ell_3 \leq f_3(x) \left(\leq u_3\right)\end{array}\right\} =: f(x) \in B(\ell, u)^{(\varepsilon_1, \varepsilon_2, u_3)}$

and, analogously,

$$\begin{array}{ll} (P_{\varepsilon_1,\varepsilon_3}^2) \ \text{lex min} & (f_2(x), \ f_1(x), \ f_3(x)) & (P_{\varepsilon_2,\varepsilon_3}^3) \ \text{lex min} & (f_1(x), \ f_3(x), \ f_2(x)) \\ \text{s.t.} & x \in X & \text{s.t.} & x \in X \\ & f(x) \in B(\ell, u)^{(\varepsilon_1, u_2, \varepsilon_3)} & f(x) \in B(\ell, u)^{(u_1, \varepsilon_2, \varepsilon_3)}. \end{array}$$

Tobias Kuhn (TU Kaiserslautern)

Triobjective Box-Algorithn

Proposition

Let z^* be the image under f of an optimal solution of $(P^1_{\varepsilon_1,\varepsilon_2})$. Then, there does not exist a $y \in Y_N \setminus \{z^*\}$ such that

$$y \in B(z^*, u) \cup B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^\top\right) \setminus B\left((\ell_1, z_2^*, z_3^*)^\top, (z_1^*, \varepsilon_2, z_3^*)^\top\right)$$

Proposition

Let z^* be the image under f of an optimal solution of $(P^1_{\varepsilon_1,\varepsilon_2})$. Then, there does not exist a $y \in Y_N \setminus \{z^*\}$ such that

$$y \in B(z^*, u) \cup B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^\top\right) \setminus B\left((\ell_1, z_2^*, z_3^*)^\top, (z_1^*, \varepsilon_2, z_3^*)^\top\right)$$

Proof.

Proposition

Let z^* be the image under f of an optimal solution of $(P^1_{\varepsilon_1,\varepsilon_2})$. Then, there does not exist a $y \in Y_N \setminus \{z^*\}$ such that

$$y \in B(z^*, u) \cup B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^\top\right) \setminus B\left((\ell_1, z_2^*, z_3^*)^\top, (z_1^*, \varepsilon_2, z_3^*)^\top\right)$$

Proof.

• $B(z^*, u)$ is dominated by z^*

Proposition

Let z^* be the image under f of an optimal solution of $(P^1_{\varepsilon_1,\varepsilon_2})$. Then, there does not exist a $y \in Y_N \setminus \{z^*\}$ such that

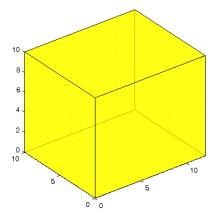
$$y \in B(z^*, u) \cup B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^{\top}\right) \setminus B\left((\ell_1, z_2^*, z_3^*)^{\top}, (z_1^*, \varepsilon_2, z_3^*)^{\top}\right)$$

Proof.

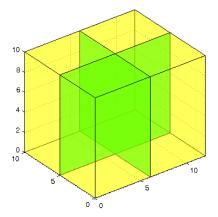
- $B(z^*, u)$ is dominated by z^*
- A nondominated point in $B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^{\top}\right) \setminus B\left((\ell_1, z_2^*, z_3^*)^{\top}, (z_1^*, \varepsilon_2, z_3^*)^{\top}\right)$ contradicts optimality of z^* for $(P_{\varepsilon_1, \varepsilon_2}^1)$

Example:

Consider an initial box with $\ell = 0$ and $u = (12, 10, 10)^{\top}$.



Example: Solve $(P_{\varepsilon_1,\varepsilon_2}^1)$ with $\varepsilon_1 = \mathbf{6}$ and $\varepsilon_2 = \mathbf{5}$.

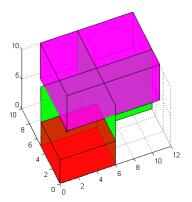


Example:

Optimal solution with image $z^* = (2, 3, 4)^{\top}$

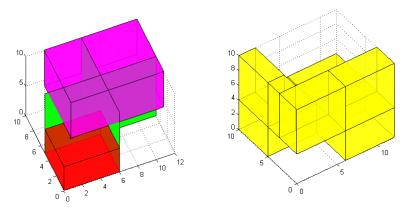
Example:

Optimal solution with image $z^* = (2, 3, 4)^\top \rightsquigarrow \text{Cut-off}$ Regions (see first proposition): $B((2,3,4)^\top, (12,10,10)^\top)$ und $B(0, (6,5,4)^\top) \setminus B((0,3,4)^\top, (2,5,4)^\top)$



Example:

Optimal solution with image $z^* = (2, 3, 4)^\top \rightsquigarrow \text{Cut-off}$ Regions (see first proposition): $B((2,3,4)^\top, (12,10,10)^\top)$ und $B(0, (6,5,4)^\top) \setminus B((0,3,4)^\top, (2,5,4)^\top)$



Definition

Let $\ell, u \in \mathbb{R}^3, \ell \leq u$ and let $\varepsilon_i = \ell_i + \frac{u_i - \ell_i}{2}$ for i = 1, 2, 3. Suppose $(P^1_{\varepsilon_1, \varepsilon_2})$ is solved. Then, the four quarters of the current box $B(\ell, u)$ are defined as

$$Q_{1,1} \coloneqq B\left(\ell, \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ u_3 \end{pmatrix}\right), \quad Q_{1,2} \coloneqq B\left(\begin{pmatrix} \varepsilon_1 \\ \ell_2 \\ \ell_3 \end{pmatrix}, \begin{pmatrix} u_1 \\ \varepsilon_2 \\ u_3 \end{pmatrix}\right),$$

$$Q_{1,3} := B\left(\begin{pmatrix}\varepsilon_1\\\varepsilon_2\\\ell_3\end{pmatrix}, u\right), \quad Q_{1,4} := B\left(\begin{pmatrix}\ell_1\\\varepsilon_2\\\ell_3\end{pmatrix}, \begin{pmatrix}\varepsilon_1\\u_2\\u_3\end{pmatrix}\right).$$

Definition

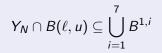
Let $\ell, u \in \mathbb{R}^3, \ell \leq u$ and let $\varepsilon_i = \ell_i + \frac{u_i - \ell_i}{2}$ for i = 1, 2, 3. Suppose $(P_{\varepsilon_1, \varepsilon_2}^1)$ is solved and let $z^* \in \mathbb{R}^3$ denote the image under f of an optimal solution for $(P_{\varepsilon_1, \varepsilon_2}^1)$. Then, the subdivision of the current box $B(\ell, u)$ consists of the boxes

$$B^{1,1} := B\left(\begin{pmatrix} \ell_1\\ z_2^*\\ z_3^* \end{pmatrix}, \begin{pmatrix} z_1^*\\ \varepsilon_2\\ u_3 \end{pmatrix}\right), \quad B^{1,2} := B\left(\begin{pmatrix} \ell_1\\ \ell_2\\ z_3^* \end{pmatrix}, \begin{pmatrix} \varepsilon_1\\ z_2^*\\ u_3 \end{pmatrix}\right)$$
$$B^{1,3} := B\left(\begin{pmatrix} \varepsilon_1\\ \ell_2\\ \ell_3 \end{pmatrix}, \begin{pmatrix} u_1\\ \varepsilon_2\\ z_3^* \end{pmatrix}\right), \quad B^{1,4} := B\left(\begin{pmatrix} \varepsilon_1\\ \ell_2\\ z_3^* \end{pmatrix}, \begin{pmatrix} u_1\\ z_2^*\\ u_3 \end{pmatrix}\right)$$
$$B^{1,5} := B\left(\begin{pmatrix} \varepsilon_1\\ \varepsilon_2\\ \ell_3 \end{pmatrix}, \begin{pmatrix} u_1\\ u_2\\ z_3^* \end{pmatrix}\right), \quad B^{1,6} := B\left(\begin{pmatrix} \ell_1\\ \varepsilon_2\\ \ell_3 \end{pmatrix}, \begin{pmatrix} \varepsilon_1\\ u_2\\ z_3^* \end{pmatrix}\right)$$
$$B^{1,7} := B\left(\begin{pmatrix} \ell_1\\ \varepsilon_2\\ z_3^* \end{pmatrix}, \begin{pmatrix} z_1^*\\ u_2\\ u_3 \end{pmatrix}\right)$$

Tobias Kuhn (TU Kaiserslautern)

Triobjective Box-Algorithm

Lemma



$Y_N \cap B(\ell, u) \subseteq \bigcup_{i=1}^7 B^{1,i}$

Proof.

Lemma

Follows directly from previous proposition.

Lemma

$$Y_N \cap B(\ell, u) \subseteq \bigcup_{i=1}^7 B^{1,i}$$

Proof.

Follows directly from previous proposition.

Observation

$$Vol(B^{1,i}) \leq rac{1}{4} \cdot Vol(B(\ell, u))$$

Moreover, for each of the quarters $Q_{1,1}$, $Q_{1,2}$ and $Q_{1,3}$, we can find two pairs of boxes for which the combined volume fulfills this formula.

Lemma

$$\sum_{i=1}^{7} Vol(B^{1,i}) \leq \frac{3}{4} \cdot Vol(B(\ell, u))$$

Lemma

$$\sum_{i=1}^{7} Vol(B^{1,i}) \leq \frac{3}{4} \cdot Vol(B(\ell, u))$$

Proof.

$$B^{\mathsf{lex}} := B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^{\top}
ight)$$
 and $B^{\mathsf{dom}} := B\left(z^*, u\right)$ are cut off with
 $Vol(B^{\mathsf{lex}}) + Vol(B^{\mathsf{dom}})$

Lemma

$$\sum_{i=1}^{7} Vol(B^{1,i}) \leq \frac{3}{4} \cdot Vol(B(\ell, u))$$

Proof.

$$\begin{split} B^{\mathsf{lex}} &:= B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^{\top}\right) \text{ and } B^{\mathsf{dom}} := B\left(z^*, u\right) \text{ are cut off with} \\ & \mathsf{Vol}(B^{\mathsf{lex}}) + \mathsf{Vol}(B^{\mathsf{dom}}) \\ & \geq \mathsf{Vol}(B^{\mathsf{lex}}) + \mathsf{Vol}\left(B\left((\varepsilon_1, \varepsilon_2, z_3^*)^{\top}, u\right)\right) \end{split}$$

Lemma

$$\sum_{i=1}^{7} Vol(B^{1,i}) \leq \frac{3}{4} \cdot Vol(B(\ell, u))$$

Proof.

$$\begin{split} B^{\mathsf{lex}} &\coloneqq B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^{\top}\right) \text{ and } B^{\mathsf{dom}} \coloneqq B\left(z^*, u\right) \text{ are cut off with} \\ & \mathsf{Vol}(B^{\mathsf{lex}}) + \mathsf{Vol}(B^{\mathsf{dom}}) \\ &\geq \mathsf{Vol}(B^{\mathsf{lex}}) + \mathsf{Vol}\left(B\left((\varepsilon_1, \varepsilon_2, z_3^*)^{\top}, u\right)\right) \\ &= \mathsf{Vol}\left(B^{\mathsf{lex}} + (\varepsilon_1 - \ell_1, \varepsilon_2 - \ell_2, 0)^{\top}\right) + \mathsf{Vol}\left(B\left((\varepsilon_1, \varepsilon_2, z_3^*)^{\top}, u\right)\right) \end{split}$$

Lemma

$$\sum_{i=1}^{7} Vol(B^{1,i}) \leq \frac{3}{4} \cdot Vol(B(\ell, u))$$

Proof.

$$B^{\mathsf{lex}} \coloneqq B\left(\ell, (arepsilon_1, arepsilon_2, z_3^*)^{ op}
ight)$$
 and $B^{\mathsf{dom}} \coloneqq B\left(z^*, u
ight)$ are cut off with

$$\begin{split} & \textit{Vol}(\mathcal{B}^{\mathsf{lex}}) + \textit{Vol}(\mathcal{B}^{\mathsf{dom}}) \\ & \geq \textit{Vol}(\mathcal{B}^{\mathsf{lex}}) + \textit{Vol}\left(\mathcal{B}\left((\varepsilon_{1}, \varepsilon_{2}, z_{3}^{*})^{\top}, u\right)\right) \\ & = \textit{Vol}\left(\mathcal{B}^{\mathsf{lex}} + (\varepsilon_{1} - \ell_{1}, \varepsilon_{2} - \ell_{2}, 0)^{\top}\right) + \textit{Vol}\left(\mathcal{B}\left((\varepsilon_{1}, \varepsilon_{2}, z_{3}^{*})^{\top}, u\right)\right) \\ & = \textit{Vol}\left(\mathcal{B}\left((\varepsilon_{1}, \varepsilon_{2}, \ell_{3})^{\top}, (u_{1}, u_{2}, z_{3}^{*})^{\top}\right)\right) + \textit{Vol}\left(\mathcal{B}\left((\varepsilon_{1}, \varepsilon_{2}, z_{3}^{*})^{\top}, u\right)\right) \end{split}$$

Tobias Kuhn (TU Kaiserslautern)

Lemma

$$\sum_{i=1}^{7} Vol(B^{1,i}) \leq \frac{3}{4} \cdot Vol(B(\ell, u))$$

Proof.

$$B^{\mathsf{lex}} \coloneqq B\left(\ell, (\varepsilon_1, \varepsilon_2, z_3^*)^{ op}
ight)$$
 and $B^{\mathsf{dom}} \coloneqq B\left(z^*, u
ight)$ are cut off with

$$\begin{split} & \operatorname{Vol}(B^{\mathsf{lex}}) + \operatorname{Vol}(B^{\mathsf{dom}}) \\ & \geq \operatorname{Vol}(B^{\mathsf{lex}}) + \operatorname{Vol}\left(B\left((\varepsilon_{1}, \varepsilon_{2}, z_{3}^{*})^{\top}, u\right)\right) \\ & = \operatorname{Vol}\left(B^{\mathsf{lex}} + (\varepsilon_{1} - \ell_{1}, \varepsilon_{2} - \ell_{2}, 0)^{\top}\right) + \operatorname{Vol}\left(B\left((\varepsilon_{1}, \varepsilon_{2}, z_{3}^{*})^{\top}, u\right)\right) \\ & = \operatorname{Vol}\left(B\left((\varepsilon_{1}, \varepsilon_{2}, \ell_{3})^{\top}, (u_{1}, u_{2}, z_{3}^{*})^{\top}\right)\right) + \operatorname{Vol}\left(B\left((\varepsilon_{1}, \varepsilon_{2}, z_{3}^{*})^{\top}, u\right)\right) \\ & = \operatorname{Vol}\left(B\left((\varepsilon_{1}, \varepsilon_{2}, \ell_{3})^{\top}, u\right)\right) = \operatorname{Vol}(Q_{1,3}) = \frac{1}{4}\operatorname{Vol}(B(\ell, u)) \end{split}$$

Algorithm 1 Box-Algorithm for three objectives

Require: MOP with three objectives, $\delta^{C} > 0$

Ensure: Rep representative system with coverage error at most δ^{C}

- 1: $\mathcal{S} \coloneqq \{\text{InitialBox}()\}$
- 2: while $\mathcal{S} \neq \emptyset$ do

3:
$$B \coloneqq B(\ell, u) \coloneqq \text{SelectBox}(\mathcal{S})$$

4: **if**
$$\|\ell - u\|_{\infty} \leq \delta^{C}$$
 then

5: Use (P_{u_1,u_2}^1) to search for a representative point in B

6: **else**

7: Determine the 2 longest edges of
$$B$$

8: Solve
$$(P_{...}^{j})$$
, $j \in \{1, 2, 3\}$, dividing these 2 edges

9: Add optimal outcome z^* to *Rep*

10: **for**
$$i \in \{1, ..., 7\}$$
 do

11: Add $B^{j,i}$ to S

Algorithm 1 Box-Algorithm for three objectives

Require: MOP with three objectives, $\delta^{C} > 0$

Ensure: Rep representative system with coverage error at most δ^{C}

- 1: $\mathcal{S} \coloneqq \{\text{InitialBox}()\}$
- 2: while $\mathcal{S} \neq \emptyset$ do

3:
$$B \coloneqq B(\ell, u) \coloneqq \operatorname{SELECTBOX}(\mathcal{S})$$

4: **if**
$$\|\ell - u\|_{\infty} \leq \delta^{C}$$
 then

5: Use (P_{u_1,u_2}^1) to search for a representative point in B

6: **else**

7: Determine the 2 longest edges of
$$B$$

8: Solve
$$(P_{...}^{j})$$
, $j \in \{1, 2, 3\}$, dividing these 2 edges

9: Add optimal outcome z^* to *Rep*

10: **for**
$$i \in \{1, ..., 7\}$$
 do

11: Add $B^{j,i}$ to S

Theorem

Algorithm 1 terminates in finitely many steps. It outputs a collection of boxes containing all nondominated points. The representative system Rep has a coverage error of at most δ^{C} (w. r. t. $\|\cdot\|_{\infty}$). More precisely, the algorithm performs at most $\mathcal{O}\left(\left(\frac{L}{\delta^{C}}\right)^{2 \cdot \log_{2}(7)}\right)$ many iterations, where L is the distance of the corner points of the initial box $B(\ell^{0}, u^{0})$, i.e., $L := \|\ell^{0} - u^{0}\|_{\infty}$.

Theorem

Algorithm 1 terminates in finitely many steps. It outputs a collection of boxes containing all nondominated points. The representative system Rep has a coverage error of at most δ^C (w. r. t. $\|\cdot\|_{\infty}$). More precisely, the algorithm performs at most $O\left(\left(\frac{L}{\delta^C}\right)^{2 \cdot \log_2(7)}\right)$ many iterations, where L is the distance of the corner points of the initial box $B(\ell^0, u^0)$, i.e., $L := \|\ell^0 - u^0\|_{\infty}$.

Proof.

see our paper ...

Corollary

Let Rep be a representative system with coverage error less than or equal to δ^{C} (w. r. t. $\|\cdot\|_{\infty}$) and let Rep_{N} denote all points of Rep which are not dominated by any other point in this set. Then it is

$$Y_N \subseteq \left(\mathsf{Rep}_N - (\delta^{\mathsf{C}}, \delta^{\mathsf{C}}, \delta^{\mathsf{C}})^{\top} \right) + \mathbb{R}^3_{\geq}.$$

Corollary

Let Rep be a representative system with coverage error less than or equal to δ^{C} (w. r. t. $\|\cdot\|_{\infty}$) and let Rep_{N} denote all points of Rep which are not dominated by any other point in this set. Then it is

$$Y_N \subseteq \left(\mathsf{Rep}_N - (\delta^{\mathsf{C}}, \delta^{\mathsf{C}}, \delta^{\mathsf{C}})^{\top} \right) + \mathbb{R}^3_{\geq}.$$

Proof.

• Let $y \in Y_N$.

Corollary

Let Rep be a representative system with coverage error less than or equal to δ^{C} (w. r. t. $\|\cdot\|_{\infty}$) and let Rep_{N} denote all points of Rep which are not dominated by any other point in this set. Then it is

$$Y_N \subseteq \left(\mathsf{Rep}_N - (\delta^{\mathsf{C}}, \delta^{\mathsf{C}}, \delta^{\mathsf{C}})^{\top} \right) + \mathbb{R}^3_{\geq}.$$

Proof.

- Let $y \in Y_N$.
- Coverage property: $\exists z \in Rep$ with $\|y z\|_{\infty} \leq \delta^{C}$ which implies

$$z - (\delta^{\mathcal{C}}, \delta^{\mathcal{C}}, \delta^{\mathcal{C}})^{\top} \leq y.$$

Corollary

Let Rep be a representative system with coverage error less than or equal to δ^{C} (w. r. t. $\|\cdot\|_{\infty}$) and let Rep_{N} denote all points of Rep which are not dominated by any other point in this set. Then it is

$$Y_N \subseteq \left(\mathsf{Rep}_N - (\delta^{\mathsf{C}}, \delta^{\mathsf{C}}, \delta^{\mathsf{C}})^{\top} \right) + \mathbb{R}^3_{\geq}.$$

Proof.

- Let $y \in Y_N$.
- Coverage property: $\exists z \in Rep$ with $||y z||_{\infty} \leq \delta^{C}$ which implies

$$z - (\delta^{\mathsf{C}}, \delta^{\mathsf{C}}, \delta^{\mathsf{C}})^{\top} \leq y.$$

• If $z \notin Rep_N$, then there exists $\hat{z} \in Rep_N$ with $\hat{z} \leq z$.

max-dist selection rule

Corollary

Let SELECTBOX() always select the box with largest corner point distance. Suppose the algorithm is aborted prematurely after $\Gamma \ge 1$ iterations and for all remaining boxes $B \in S$, we additionally execute a "completion step". Then, the representative system Rep has a coverage error of at most $L \cdot 2^{-\lfloor (\log_7(6\Gamma+1))/2 \rfloor}$, where L equals the corner point distance $\|\ell^0 - u^0\|_{\infty}$ of the initial box $B(\ell^0, u^0)$.

nondominated selection rule

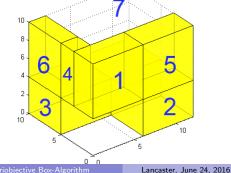
• Problem: Generation of (in a later step) dominated solutions.

nondominated selection rule

- Problem: Generation of (in a later step) dominated solutions.
- *Idea:* Do not select the box with *maximal distance*, but the box which cannot be "dominated" in a future iteration.

nondominated selection rule

- Problem: Generation of (in a later step) dominated solutions.
- *Idea:* Do not select the box with *maximal distance*, but the box which cannot be "dominated" in a future iteration.
- Store the *list of unexplored boxes* in analogy to a tree, where we perform a *depth first search* (DFS).



nondominated selection rule

- Problem: Generation of (in a later step) dominated solutions.
- *Idea:* Do not select the box with *maximal distance*, but the box which cannot be "dominated" in a future iteration.
- Store the *list of unexplored boxes* in analogy to a tree, where we perform a *depth first search* (DFS).
- *Result:* By appropriately cutting off dominated parts of (partial) dominated boxes during the algorithm, we obtain a representative system $Rep = Rep_N$ fulfilling the desired accuracy.

• $Rep \subseteq Y_N$ is not guaranteed in the algorithm

- $Rep \subseteq Y_N$ is not guaranteed in the algorithm
- The representation error $\max_{z \in Rep} \min_{y \in Y_N} ||z y||$ can be positive.

- $Rep \subseteq Y_N$ is not guaranteed in the algorithm
- The representation error $\max_{z \in Rep} \min_{y \in Y_N} ||z y||$ can be positive.
- Suppose representative system *Rep* has coverage error at most δ^C w. r. t. some norm || · ||.

- $Rep \subseteq Y_N$ is not guaranteed in the algorithm
- The representation error $\max_{z \in Rep} \min_{y \in Y_N} ||z y||$ can be positive.
- Suppose representative system *Rep* has coverage error at most δ^C w. r. t. some norm || · ||.

Definition

Let \mathcal{B} be the last subdivision (covering the whole set Y_N) obtained from Algorithm 1. Let $z \in Rep$ and $B(z) \subseteq \mathcal{B}$ be the set containing either the box for which z was computed or the corresponding child boxes contained in the corresponding quarter of the box for which z was computed. Then, we define $\mathcal{B}^z := \{B \in \mathcal{B} : B \cap (z - \mathbb{R}^3_{\geq}) \neq \emptyset \land B \notin B(z)\}$. If $\mathcal{B}^z \neq \emptyset$, we call z a *critical representative point*.

Lemma

For MOP, let (Rep, B) be the output of Algorithm 1 and $z \in Rep$ be some representative point. Then, it holds

$$(\mathcal{B}^z = \emptyset) \Longrightarrow (z \in Y_N)$$

Lemma

For MOP, let (Rep, B) be the output of Algorithm 1 and $z \in Rep$ be some representative point. Then, it holds

$$(\mathcal{B}^z = \emptyset) \Longrightarrow (z \in Y_N)$$

Proposition

W

B

$$\max_{z \in Rep} \min_{y \in Y_N} \|z - y\|$$

$$\leq \min \left\{ \max_{z \in Rep} \max_{B(\ell, u) \in \mathcal{B}^z} \|\ell - z\|, \max_{\substack{z \in Rep \\ \mathcal{B}^z \neq \emptyset}} \max_{\hat{z} \in B_{\delta^C}^{Rep}(z - \mathbb{R}^3_{\geq})} \|z - \hat{z}\| + \delta^C \right\}$$
here $B_{\delta^C}^{Rep}(z - \mathbb{R}^3_{\geq}) \coloneqq \left\{ y \in Rep : \exists \tilde{y} \in z - \mathbb{R}^3_{\geq} \land \|y - \tilde{y}\| \leq \delta^C \right\}$ and
$$\max_{\ell, u) \in \mathcal{B}^z} \|\ell - z\|$$
 returns the value 0 if $\mathcal{B}^z = \emptyset$.

Lemma

For MOP, let (Rep, B) be the output of Algorithm 1 and $z \in Rep$ be some representative point. Then, it holds

$$(\mathcal{B}^z = \emptyset) \Longrightarrow (z \in Y_N)$$

Proposition

и

B

$$\max_{z \in Rep} \min_{y \in Y_N} ||z - y||$$

$$\leq \min \left\{ \max_{\substack{z \in Rep \ B(\ell, u) \in \mathcal{B}^z}} \max_{\substack{\ell - z \mid \\ \mathcal{B}^z \neq \emptyset}} \max_{\substack{z \in Rep \ \hat{z} \in \mathcal{B}_{\delta^C}^{Rep}(z - \mathbb{R}^3_{\geq})}} ||z - \hat{z}|| + \delta^C \right\}$$
where $\mathcal{B}_{\delta^C}^{Rep}(z - \mathbb{R}^3_{\geq}) \coloneqq \{y \in Rep : \exists \tilde{y} \in z - \mathbb{R}^3_{\geq} \land ||y - \tilde{y}|| \leq \delta^C \}$ and
$$\max_{\substack{(\ell, u) \in \mathcal{B}^z}} ||\ell - z|| \text{ returns the value 0 if } \mathcal{B}^z = \emptyset.$$

Lemma

For MOP, let (Rep, B) be the output of Algorithm 1 and $z \in Rep$ be some representative point. Then, it holds

$$(\mathcal{B}^z = \emptyset) \Longrightarrow (z \in Y_N)$$

Proposition

w

 $B(\ell, u) \in \mathcal{B}^z$

$$\max_{z \in Rep} \min_{y \in Y_N} \|z - y\|$$

$$\leq \min \left\{ \max_{z \in Rep} \max_{B(\ell, u) \in \mathcal{B}^z} \|\ell - z\|, \max_{\substack{z \in Rep \\ \mathcal{B}^z \neq \emptyset}} \max_{\hat{z} \in B_{\delta^C}^{Rep}(z - \mathbb{R}^3_{\geq})} \|z - \hat{z}\| + \delta^C \right\}$$
here $B_{\delta^C}^{Rep}(z - \mathbb{R}^3_{\geq}) \coloneqq \left\{ y \in Rep : \exists \tilde{y} \in z - \mathbb{R}^3_{\geq} \land \|y - \tilde{y}\| \leq \delta^C \right\}$ and
$$\max_{\substack{\|\ell - z\| \text{ returns the value } 0 \text{ if } \mathcal{B}^z = \emptyset.}$$

Tobias Kuhn (TU Kaiserslautern)

Conclusion

Box algorithm for computing representative sets for MOPs with p = 3 objectives

- easy to implement
- with desired coverage error
- with the capability of relating the run time of the algorithm to the quality of the representative system
- with different selection rules
- representative points are not necessarily nondominated but bound on representation error

Conclusion

Box algorithm for computing representative sets for MOPs with p = 3 objectives

- easy to implement
- with desired coverage error
- with the capability of relating the run time of the algorithm to the quality of the representative system
- with different selection rules
- representative points are not necessarily nondominated but bound on representation error

Thank you for your attention!