Robust and Multiobjective Optimisation: Opportunities and Challenges

Recent Advances in Multi-Objective Optimization

Marc Goerigk

Department of Management Science Lancaster University

24/06/2016, Lancaster

Robust Optimisation

Multi-Objective Optimisation

 optimise with several objectives

Robust Optimisation

Multi-Objective Optimisation

 optimise with several objectives

$$\min \begin{pmatrix} f_1(x) \\ \vdots \\ f_k(x) \end{pmatrix}$$

Robust Optimisation

optimise with uncertain data

Multi-Objective Optimisation

 optimise with several objectives

$$\min \begin{pmatrix} f_1(x) \\ \vdots \\ f_k(x) \end{pmatrix}$$
$$x \in \mathcal{X}$$

Robust Optimisation

optimise with uncertain data

```
\min \sup_{\xi \in \mathcal{U}} f(x,\xi)x \in \mathcal{X}
```

Multi-Objective Optimisation

 optimise with several objectives

r

$$\min \begin{pmatrix} f_1(x) \\ \vdots \\ f_k(x) \end{pmatrix}$$
$$x \in \mathcal{X}$$

In this talk:

What can MOO and RO learn from each other?

Structure

We discuss three connections:

Structure

We discuss three connections:

 adding robustness as a new objective function to a singe-objective problem

Structure

We discuss three connections:

- adding robustness as a new objective function to a singe-objective problem
- 2 considering the robust counterpart of a multi-objective problem

Structure

We discuss three connections:

- adding robustness as a new objective function to a singe-objective problem
- 2 considering the robust counterpart of a multi-objective problem
- 3 using a multi-objective perspective on a robust problem

Adding robustness as a new objective function

Idea

 $\min f(x,\xi)$ $x \in \mathcal{X}(\xi)$

Idea

Examples

- Mulvey, Vanderbei, Zenios. Robust Optimization of Large-Scale Systems, Oper Res '95.
- Liebchen, Lübbecke, Möhring, Stiller. The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications, LNCS 5868, '09.

 Chassein, Goerigk. A Bicriteria Approach to Robust Optimization, COR '16.

 Carrizosa, Goerigk, Schöbel. A biobjective approach to robustness based on location planning, arXiv '16.

Examples

- Mulvey, Vanderbei, Zenios. Robust Optimization of Large-Scale Systems, Oper Res '95.
 - weighted sum on objectives
- Liebchen, Lübbecke, Möhring, Stiller. The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications, LNCS 5868, '09.

 Chassein, Goerigk. A Bicriteria Approach to Robust Optimization, COR '16.

 Carrizosa, Goerigk, Schöbel. A biobjective approach to robustness based on location planning, arXiv '16.

Examples

- Mulvey, Vanderbei, Zenios. Robust Optimization of Large-Scale Systems, Oper Res '95.
 - weighted sum on objectives
- Liebchen, Lübbecke, Möhring, Stiller. The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications, LNCS 5868, '09.
 - weighted sum on objectives
 - often: instead a budget on recovery function
- Chassein, Goerigk. A Bicriteria Approach to Robust Optimization, COR '16

■ Carrizosa, Goerigk, Schöbel. A biobjective approach to robustness based on location planning, arXiv '16.

Examples

- Mulvey, Vanderbei, Zenios. Robust Optimization of Large-Scale Systems, Oper Res '95.
 - weighted sum on objectives
- Liebchen, Lübbecke, Möhring, Stiller. The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications, LNCS 5868, '09.
 - weighted sum on objectives
 - often: instead a budget on recovery function
- Chassein, Goerigk. A Bicriteria Approach to Robust Optimization, COR '16
 - worst-case and average-case as objectives
 - later in this talk
- Carrizosa, Goerigk, Schöbel. A biobjective approach to robustness based on location planning, arXiv '16.

Examples

- Mulvey, Vanderbei, Zenios. Robust Optimization of Large-Scale Systems, Oper Res '95.
 - weighted sum on objectives
- Liebchen, Lübbecke, Möhring, Stiller. The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications, LNCS 5868, '09.
 - weighted sum on objectives
 - often: instead a budget on recovery function
- Chassein, Goerigk. A Bicriteria Approach to Robust Optimization, COR '16
 - worst-case and average-case as objectives
 - later in this talk
- Carrizosa, Goerigk, Schöbel. A biobjective approach to robustness based on location planning, arXiv '16.

Approach of [CGS16]

min
$$f(x,\xi)$$

 $F(x,\xi) \le 0$
 $x \in \mathcal{X}$

Approach of [CGS16]

$$\min f(x,\xi) \qquad \min \left(\begin{array}{c} \\ \end{array} \right)$$

$$F(x,\xi) \leq 0 \qquad \rightarrow \qquad F(y(\xi),\xi) \leq 0 \quad \forall \xi \in \mathcal{U}$$

$$x \in \mathcal{X} \qquad \qquad x \in \mathcal{X}$$

$$y: \mathcal{U} \rightarrow \mathcal{X}$$

Approach of [CGS16]

$$\min f(x,\xi) \qquad \min \begin{pmatrix} \sup_{\xi \in \mathcal{U}} f(y(\xi),\xi) \\ \sup_{\xi \in \mathcal{U}} d(x,y(\xi)) \end{pmatrix} \\ F(x,\xi) \le 0 \qquad \rightarrow \qquad F(y(\xi),\xi) \le 0 \quad \forall \xi \in \mathcal{U} \\ x \in \mathcal{X} \qquad \qquad x \in \mathcal{X} \\ y : \mathcal{U} \to \mathcal{X}$$

 $\leq 0 \ \forall \xi \in \mathcal{U}$

$\varepsilon\text{-constraint}$ on f

Results on Biobjective Problem

Let

- $\mathcal{U} = conv(\mathcal{U}')$ with $\mathcal{U}' \coloneqq \{\xi^1, \dots, \xi^N\}.$
- F consist of m constraints with $F_i : \mathbb{R}^n \times \mathcal{U} \to \mathbb{R}$, $i = 1, \dots, m$

• $f : \mathbb{R}^n \times \mathcal{U} \to \mathbb{R}$ jointly quasiconvex in (y, ξ)

- $d(x, \cdot)$ quasiconvex.
- \mathcal{X} convex

Then $\operatorname{Rec}(\mathcal{U})$ and $\operatorname{Rec}(\mathcal{U}')$ have the same set of recoverable-robust solutions.

Approach Summary

- widely used
- most often:

Approach Summary

- widely used
- most often:
 - sum of objectives, one arbitrary scaling factor
 - one arbitray budget on (robustness) objective

Approach Summary

- widely used
- most often:
 - sum of objectives, one arbitrary scaling factor
 - one arbitray budget on (robustness) objective
- no effort to find (all/most) Pareto solutions

multi-objective nature not acknowledged

Robust counterparts of multi-objective problems

RC of MOP

Examples

- recently developed
- Ehrgott, Ide, Schöbel. Minmax robustness for multi-objective optimization problems, EJOR '14.
- Kuhn, Raith, Schmidt, Schöbel. Bi-objective robust optimisation, EJOR '16.
- Deb, Gupta. Introducing Robustness in Multi-Objective Optimization, Evol Comp '06.
- Ide, Schöbel. Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts, '15.

RC of MOP

Examples

- recently developed
- Ehrgott, Ide, Schöbel. Minmax robustness for multi-objective optimization problems, EJOR '14.
- Kuhn, Raith, Schmidt, Schöbel. Bi-objective robust optimisation, EJOR '16.
- Deb, Gupta. Introducing Robustness in Multi-Objective Optimization, Evol Comp '06.
- Ide, Schöbel. Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts, '15.

RC of MOP

RC of MOP

Approach Summary

- young and increasingly popular
- see Gabi's talk
- see Corinna's talk

Using a multi-objective perspective on robust problems

Examples

- Aissi, Bazgan, Vanderpooten. Approximation of min-max and min-max regret versions of some combinatorial optimization problems, EJOR '07.
 - FPTAS based on FPTAS for multi-objective problems
- Chassein, Goerigk. A Bicriteria Approach to Robust Optimization, COR '16.
- Chassein, Goerigk. Variable-Sized Uncertainty and Inverse Problems in Robust Optimization, in preparation.

Examples

- Aissi, Bazgan, Vanderpooten. Approximation of min-max and min-max regret versions of some combinatorial optimization problems, EJOR '07.
 - FPTAS based on FPTAS for multi-objective problems
- Chassein, Goerigk. A Bicriteria Approach to Robust Optimization, COR '16.
- Chassein, Goerigk. Variable-Sized Uncertainty and Inverse Problems in Robust Optimization, in preparation.

$\min \max\{c_1^t x, c_2^t x\}$ $x \in \mathcal{X}$

How to use this relationship? For approximation algorithms: average solution $\min c_1^t x + c_2^t x$

 $c_1^t x$

How to use this relationship?

For approximation algorithms:

average solution

$$\min c_1^t x + c_2^t x$$

Approach to Use Relationship

Consider again our first connection between robust and multi-objective optimisation, using robustness as an additional objective:

$$\min \begin{pmatrix} \hat{c}x \\ \max_{k \in [N]} c^k x \end{pmatrix}$$
$$x \in \mathcal{X}$$

Observations

- As for the WC-solution, we can show:
 - The set of Pareto efficient solution w.r.t. (*c*₁,...,*c*_N, *ĉ*) contains the Pareto efficient solutions w.r.t. (*z*, *ĉ*)

Observations

- As for the WC-solution, we can show:
 - The set of Pareto efficient solution w.r.t. (*c*₁,...,*c*_N, *ĉ*) contains the Pareto efficient solutions w.r.t. (*z*, *ĉ*)
- Solving weighted sums w.r.t. (c₁,..., c_N, ĉ) is easy (algorithms of original problem type can be used), but w.r.t. (z, ĉ) is hard (algorithms for robust problem must be used)

Observations

- As for the WC-solution, we can show:
 - The set of Pareto efficient solution w.r.t. (*c*₁,...,*c*_N, *ĉ*) contains the Pareto efficient solutions w.r.t. (*z*, *ĉ*)
- Solving weighted sums w.r.t. (c₁,..., c_N, ĉ) is easy (algorithms of original problem type can be used), but w.r.t. (z, ĉ) is hard (algorithms for robust problem must be used)

Idea

Solve "the right" subproblems w.r.t. $(c_1, \ldots, c_N, \hat{c})$ instead of $(z, \hat{c})!$

Master problem

Let $\{y^1, \ldots, y^r\}$ denote the extreme points of all Pareto efficient solutions w.r.t. $(c_1, \ldots, c_N, \hat{c})$ in the objective space.

Management School

Master problem

Let $\{y^1, \ldots, y^r\}$ denote the extreme points of all Pareto efficient solutions w.r.t. $(c_1, \ldots, c_N, \hat{c})$ in the objective space. We solve weighted sums

(M) min
$$\lambda a + (1 - \lambda)z$$

s.t. $\hat{y} = \sum_{i=1}^{r} \alpha_i y^i$
 $\sum_{i=1}^{r} \alpha_i = 1$
 $\hat{y}_{n+1} = a$
 $\hat{y}_i \le z$ $i = 1, \dots, N$
 $\alpha \ge 0$

Slave problems

Problem (M) potentially contains exponentially many variables.

Slave problems

Problem (M) potentially contains exponentially many variables. Use column generation to generate them.

Slave problems

Problem (M) potentially contains exponentially many variables. Use column generation to generate them.

Subproblem = Find an efficient solution with negative reduced costs

Slave problems

Problem (M) potentially contains exponentially many variables. Use column generation to generate them.

Subproblem = Find an efficient solution

with negative reduced costs

= Solving problems of the original type

Slave problems

Problem (M) potentially contains exponentially many variables. Use column generation to generate them.

Subproblem = Find an efficient solution with negative reduced costs = Solving problems of the original type = easy!

Slave problems

Problem (M) potentially contains exponentially many variables. Use column generation to generate them.

Subproblem = Find an efficient solution with negative reduced costs = Solving problems of the original type = easy!

Result

We can compute the AC-WC Pareto front by solving problems of type (M) and problems of the original type.

Lancaster University Management School

Idea

Want to solve robust problem

 $\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{\lambda}} c^{t} x$

with $\mathcal{U} = \hat{c} + \lambda B$

Idea

Want to solve robust problem

 $\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{\lambda}} c^{t} x$

with $\mathcal{U} = \hat{c} + \lambda B$

We know the shape of uncertainty.

Idea

Want to solve robust problem

 $\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{\lambda}} c^{t} x$

with $\mathcal{U} = \hat{c} + \lambda B$

- We know the shape of uncertainty.
- We do not know the size of uncertainty.

Idea

Want to solve robust problem

 $\min_{x \in \mathcal{X}} \max_{c \in \mathcal{U}_{\lambda}} c^{t} x$

with $\mathcal{U} = \hat{c} + \lambda B$

- We know the shape of uncertainty.
- We do not know the size of uncertainty.
- Find smalles set S that contains an optimal robust solution for every λ .

Connection to MOO

• Let
$$B = \prod_{i \in [n]} [-d_i, d_i].$$

Connection to MOO • Let $B = \prod_{i \in [n]} [-d_i, d_i].$ $\max_{c \in U_{\lambda}} c^t x = c^t x + \lambda d^t x$

Application to Shortest Path

• Compute K efficient points in O(K)

Application to Shortest Path

- Compute K efficient points in O(K)
- General: $K \in 2^{\Omega(\log^2(n))}$

Application to Shortest Path

- Compute K efficient points in O(K)
- General: $K \in 2^{\Omega(\log^2(n))}$
- Acyclic: $K \in O(n^{\log n})$
- Layered graph: $K \in O(w^{\log(\ell+1)})$
- Series-parallel: $K \in O(m-n)$

Overall Summary

Robust and MO Optimisation

- strengthen RO via MOO
- strengthen MOO via RO

Overall Summary

Robust and MO Optimisation

- strengthen RO via MOO
- strengthen MOO via RO
- Plenty of combinations possible!
- Many more exciting combinations to come!

