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We discuss three connections:

adding robustness as a new objective function to a
singe-objective problem

considering the robust counterpart of a multi-objective
problem

using a multi-objective perspective on a robust problem
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Adding Robustness

Examples

m Mulvey, Vanderbei, Zenios. Robust Optimization of Large-Scale
Systems, Oper Res '95.

m Liebchen, Liibbecke, Mohring, Stiller. The Concept of Recoverable
Robustness, Linear Programming Recovery, and Railway
Applications, LNCS 5868, '09.

m Chassein, Goerigk. A Bicriteria Approach to Robust Optimization,
COR '16.

m Carrizosa, Goerigk, Schobel. A biobjective approach to robustness
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Adding Robustness

Results on Biobjective Problem

Let
m U = conv(U") with U’ := {¢L, ... &N
m F consist of m constraints with F; :R"xU - R, i=1,...,m

m 7 :R”xU - R jointly quasiconvex in (y,§)
m d(x,-) quasiconvex.
m X convex

Then Rec(U) and Rec(U") have the same set of recoverable-robust
solutions.
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Adding Robustness

Approach Summary

m widely used
m most often:

m sum of objectives, one arbitrary scaling factor
m one arbitray budget on (robustness) objective

m no effort to find (all/most) Pareto solutions

m multi-objective nature not acknowledged
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Robust counterparts of multi-objective problems
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RC of MOP

Examples

m recently developed

m Ehrgott, Ide, Schobel. Minmax robustness for multi-objective
optimization problems, EJOR '14.

m Kuhn, Raith, Schmidt, Schébel. Bi-objective robust
optimisation, EJOR '16.

m Deb, Gupta. Introducing Robustness in Multi-Objective
Optimization, Evol Comp '06.

m Ide, Schobel. Robustness for uncertain multi-objective
optimization: a survey and analysis of different concepts, '15. |
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RC of MOP

Approach Summary
m young and increasingly popular
m see Gabi's talk

m see Corinna’s talk
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Using a multi-objective perspective on robust problems
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MOO for RO

Examples

m Aissi, Bazgan, Vanderpooten. Approximation of min—-max and
min—-max regret versions of some combinatorial optimization
problems, EJOR '07.

m FPTAS based on FPTAS for multi-objective problems

m Chassein, Goerigk. A Bicriteria Approach to Robust Optimization,
COR '16.

m Chassein, Goerigk. Variable-Sized Uncertainty and Inverse Problems
in Robust Optimization, in preparation.
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How to use this relationship?

For approximation algorithms:

m average solution
m mincix+cix

CyT
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Computing the AC-WC Curve

Approach to Use Relationship

Consider again our first connection between robust and

multi-objective optimisation, using robustness as an additional
objective:
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Computing the AC-WC Curve

Observations

m As for the WC-solution, we can show:

m The set of Pareto efficient solution w.r.t. (ci,...,cn,¢)
contains the Pareto efficient solutions w.r.t. (z, &)
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m Solving weighted sums w.r.t. (c1,...,cn, C) is easy
(algorithms of original problem type can be used), but w.r.t.
(z,¢) is hard (algorithms for robust problem must be used)

Idea

Solve “the right” subproblems w.r.t. (ci,...,cn,¢) instead of
(z,8)!
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Computing the AC-WC Curve

Master problem

Let {y',...,y"} denote the extreme points of all Pareto efficient
solutions w.r.t. (c1,...,cn,€) in the objective space.

21/29 &



Computing the AC-WC Curve

Master problem
Let {y!,...,y"} denote the extreme points of all Pareto efficient
solutions w.r.t. (c1,...,cn,¢) in the objective space. We solve

weighted sums

(M) min Aa+ (1-\)z
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Computing the AC-WC Curve

Slave problems

Problem (M) potentially contains exponentially many variables.
Use column generation to generate them.

Subproblem = Find an efficient solution
with negative reduced costs
= Solving problems of the original type

= easy!

Result
We can compute the AC-WC Pareto front by solving problems of

type (M) and problems of the original type.
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Variable-Sized Uncertainty

Idea

Want to solve robust problem

min max c'x
xeX cely

with U =¢+ AB
m We know the shape of uncertainty.
m We do not know the size of uncertainty.

m Find smalles set S that contains an optimal robust solution
for every .
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Variable-Sized Uncertainty

Connection to MOO
mlet B= Hie[n][_di7di]'

max ctx = ctx + Adtx
celdy

m Find minimal set of efficient
extreme points! dtm
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Variable-Sized Uncertainty

Application to Shortest Path
m Compute K efficient points in O(K)
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Variable-Sized Uncertainty

Application to Shortest Path
m Compute K efficient points in O(K)
m General: K ¢ 2(Iog*(m)
m Acyclic: K € O(n'°8")
m Layered graph: K € O(w'°e(¢+1))
m Series-parallel: K€ O(m—-n)
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Variable-Sized Uncertainty
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Overall Summary

Robust and MO Optimisation
m strengthen RO via MOO
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Overall Summary

Robust and MO Optimisation
m strengthen RO via MOO
m strengthen MOO via RO
m Plenty of combinations possible!

m Many more exciting combinations to come!
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