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Introduction

Robust Optimisation

optimise with uncertain data

min sup
ξ∈U

f (x , ξ)

x ∈ X

Multi-Objective Optimisation

optimise with several
objectives

min
⎛
⎜
⎝

f1(x)
⋮

fk(x)

⎞
⎟
⎠

x ∈ X

In this talk:

What can MOO and RO learn from each other?
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Introduction

Structure

We discuss three connections:

1 adding robustness as a new objective function to a
singe-objective problem

2 considering the robust counterpart of a multi-objective
problem

3 using a multi-objective perspective on a robust problem
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Adding robustness as a new objective function

4/29



Adding Robustness

Idea

min f (x , ξ)
x ∈ X(ξ)

→
min f̃ (x)
max rob(x)

x ∈ X

5/29



Adding Robustness

Idea

min f (x , ξ)
x ∈ X(ξ) →

min f̃ (x)
max rob(x)

x ∈ X

5/29



Adding Robustness

Examples

Mulvey, Vanderbei, Zenios. Robust Optimization of Large-Scale
Systems, Oper Res ’95.

weighted sum on objectives

Liebchen, Lübbecke, Möhring, Stiller. The Concept of Recoverable
Robustness, Linear Programming Recovery, and Railway
Applications, LNCS 5868, ’09.

weighted sum on objectives
often: instead a budget on recovery function

Chassein, Goerigk. A Bicriteria Approach to Robust Optimization,
COR ’16.

worst-case and average-case as objectives
later in this talk

Carrizosa, Goerigk, Schöbel. A biobjective approach to robustness

based on location planning, arXiv ’16.
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Carrizosa, Goerigk, Schöbel. A biobjective approach to robustness

based on location planning, arXiv ’16.

6/29



Adding Robustness

Approach of [CGS16]

min f (x , ξ)
F (x , ξ) ≤ 0

x ∈ X

→

min (

supξ∈U f (y(ξ), ξ)
supξ∈U d(x , y(ξ))

)

F (y(ξ), ξ) ≤ 0 ∀ξ ∈ U
x ∈ X
y ∶ U → X
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Adding Robustness

ε-constraint on f
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Adding Robustness

Results on Biobjective Problem

Let

U = conv(U ′) with U ′ ∶= {ξ1, . . . , ξN}.

F consist of m constraints with Fi ∶ Rn × U → R, i = 1, . . . ,m

f ∶ Rn × U → R jointly quasiconvex in (y , ξ)
d(x , ⋅) quasiconvex.

X convex

Then Rec(U) and Rec(U ′) have the same set of recoverable-robust
solutions.
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Adding Robustness

Approach Summary

widely used

most often:

sum of objectives, one arbitrary scaling factor
one arbitray budget on (robustness) objective

no effort to find (all/most) Pareto solutions

multi-objective nature not acknowledged
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Robust counterparts of multi-objective problems

11/29



RC of MOP

Examples

recently developed

Ehrgott, Ide, Schöbel. Minmax robustness for multi-objective
optimization problems, EJOR ’14.

Kuhn, Raith, Schmidt, Schöbel. Bi-objective robust
optimisation, EJOR ’16.

Deb, Gupta. Introducing Robustness in Multi-Objective
Optimization, Evol Comp ’06.

Ide, Schöbel. Robustness for uncertain multi-objective
optimization: a survey and analysis of different concepts, ’15.
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RC of MOP
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RC of MOP

Approach Summary

young and increasingly popular

see Gabi’s talk

see Corinna’s talk
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Using a multi-objective perspective on robust problems
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MOO for RO

Examples

Aissi, Bazgan, Vanderpooten. Approximation of min–max and
min–max regret versions of some combinatorial optimization
problems, EJOR ’07.

FPTAS based on FPTAS for multi-objective problems

Chassein, Goerigk. A Bicriteria Approach to Robust Optimization,

COR ’16.

Chassein, Goerigk. Variable-Sized Uncertainty and Inverse Problems

in Robust Optimization, in preparation.

16/29



MOO for RO

Examples

Aissi, Bazgan, Vanderpooten. Approximation of min–max and
min–max regret versions of some combinatorial optimization
problems, EJOR ’07.

FPTAS based on FPTAS for multi-objective problems

Chassein, Goerigk. A Bicriteria Approach to Robust Optimization,

COR ’16.

Chassein, Goerigk. Variable-Sized Uncertainty and Inverse Problems

in Robust Optimization, in preparation.

16/29



MOO for RO

min max{ct
1x , ct

2x}
x ∈ X
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MOO for RO

How to use this relationship?

For approximation algorithms:

average solution

min c t
1x + c t

2x

N approx

quadratic solution

min
√

(c t
1x)2 + (c t

2x)2
√

N approx
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Computing the AC-WC Curve

Approach to Use Relationship

Consider again our first connection between robust and
multi-objective optimisation, using robustness as an additional
objective:

min( ĉx

maxk∈[N] ckx
)

x ∈ X

19/29



Computing the AC-WC Curve

Observations

As for the WC-solution, we can show:

The set of Pareto efficient solution w.r.t. (c1, . . . , cN , ĉ)
contains the Pareto efficient solutions w.r.t. (z , ĉ)

Solving weighted sums w.r.t. (c1, . . . , cN , ĉ) is easy
(algorithms of original problem type can be used), but w.r.t.
(z , ĉ) is hard (algorithms for robust problem must be used)

Idea

Solve “the right” subproblems w.r.t. (c1, . . . , cN , ĉ) instead of
(z , ĉ)!
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(algorithms of original problem type can be used), but w.r.t.
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(z , ĉ)!
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(z , ĉ) is hard (algorithms for robust problem must be used)

Idea

Solve “the right” subproblems w.r.t. (c1, . . . , cN , ĉ) instead of
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Computing the AC-WC Curve

Master problem

Let {y 1, . . . , y r} denote the extreme points of all Pareto efficient
solutions w.r.t. (c1, . . . , cN , ĉ) in the objective space.

We solve
weighted sums

(M) min λa + (1 − λ)z

s.t. ŷ =
r

∑
i=1

αiy
i

r

∑
i=1

αi = 1

ŷn+1 = a

ŷi ≤ z i = 1, . . . ,N

α ≥ 0
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solutions w.r.t. (c1, . . . , cN , ĉ) in the objective space. We solve
weighted sums

(M) min λa + (1 − λ)z

s.t. ŷ =
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Computing the AC-WC Curve

Slave problems

Problem (M) potentially contains exponentially many variables.

Use column generation to generate them.

Subproblem = Find an efficient solution

=

with negative reduced costs

= Solving problems of the original type

= easy!

Result

We can compute the AC-WC Pareto front by solving problems of
type (M) and problems of the original type.
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Computing the AC-WC Curve
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Variable-Sized Uncertainty

Idea

Want to solve robust problem

min
x∈X

max
c∈Uλ

ctx

with U = ĉ + λB

We know the shape of uncertainty.

We do not know the size of uncertainty.

Find smalles set S that contains an optimal robust solution
for every λ.
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Variable-Sized Uncertainty

Connection to MOO

Let B = ∏i∈[n][−di ,di ].

max
c∈Uλ

ctx = ctx + λd tx

Find minimal set of efficient
extreme points!
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Variable-Sized Uncertainty

Application to Shortest Path

Compute K efficient points in O(K)

General: K ∈ 2Ω(log2(n))

Acyclic: K ∈ O(nlog n)
Layered graph: K ∈ O(w log(`+1))
Series-parallel: K ∈ O(m − n)
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Variable-Sized Uncertainty
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Variable-Sized Uncertainty
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Overall Summary

Robust and MO Optimisation

strengthen RO via MOO

strengthen MOO via RO

Plenty of combinations possible!

Many more exciting combinations to come!
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