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Multiobjective constrained optimization

Constrained multiobjective optimization problem

min - f(x) = (f200)i:01:Fm(x)T
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Multiobjective constrained optimization

Constrained multiobjective optimization problem
rr;in f(x)=(fa(x);:::fm(x)T
X

with

= fx2[5u]l R":g(x) Oj=1;::5;p; h(x)=0;1=1;:::;09

v

"2 (R[flg )", u2 (R[f +1g)";

All objective functions are at least?;
@ All constraint functions are at least?;

o We also allowunconstrainedor box-constrained optimizationp{ g=0
and/or *=flg "ju=flg ").
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VT ES
Algorithm main lines

e Doesnot aggregateany of the objective functions
e UsesSQP based techniques for MOO
o Keeps a list olnondominatedpoints

e Constraintsviolationsare considered as additional objectives in the
linesearch steps.

o Tries to capture thewhole Pareto frontfrom two algorithmic stages:
search and re ning
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GullT=Ele
Algorithm illustrated - spread
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Algorithm illustrated - re ning
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Some|detalls
Search direction computation

For eachxy in the list of nondominated points:

d 2 argggiRr?] rfi(x)Td+ %dTHid

st g(xi)+rg(x)'d 0 j=1;:1p
hi(xi) + 1 hi(x)Td=0; 1=1;:::5q
Xk+d u

whereH; is apositive de nite matrix.
d; is a descent direction fof;.
Linesearch: tesky+ d; ( =2!' t=0;1;2;:::) for being nondominated.
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Some|detalls
Search direction computation

For eachxy in the list of nondominated points:

Re ning
mn o he
i=1
st. fi(x) fi(xx); i=1;:::0;m
g(x) 0 j=1;::5;p
h(x)=0; 1=1;:::;q

Iterations of an SQP-type method for this problem are carried owing
Xk as a starting point.
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Some|detalls
Some theoretical considerations

o From spread stageve obtain new points.

@ The spread staggerforms a nite number of iterations. (No
asymptotics here!)

@ The re ning stagedrives all the available nondominated points to
Pareto criticality,

@ by obtaining a new point thatlecreasesr maintainsall the objective
function values.

o (Local) Paretocriticality can be veri ed based on the re ning
single-objective optimization problem.

@ Convergence theorgvailable for the proposed algorithm.
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|mplementation
Implementation

o Implemented in MATLAB (fast prototyping, high performance)

o (Single-objective)subproblemsare solved byquadprog and fmincon
MATLAB solvers

o Maximum of 20 iterations on the spread stage

@ We consider three possibilities for th¢; matrix:
e H; = | in both stages
o Hi =(r ?fi(xx) + Ej) in both stages E; p.d. matrix)

o Hi = I in the spread stage andl; = (r 2f;(xx) + E;) in the re ning
stage

@ Two (list) initialization strategies are implemented:
o line {aline between andu (xj = ~ + |;n—s i=1;:::;2nS).

o rand { a uniform (";u) random distribution.
MOSQP 24 June 2016 14/33
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Academic test set

@ Problems from the academic literature.

@ Problems have beeoodedin AMPL (and a MATLAB-AMPL
interface was used). Exact derivatives are provided by AMPL.

@ 67 bound constrained test problen{SO problems withm =2, 17
problems withm = 3), n varying between 2 and 30.

@ 21 constrained test problem@?2 problems withm = 2, 9 problems

with m = 3), 7 with nonlinear constraints, 9 with linear constraints,
and 5 with both,n varying between 2 and 20.
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(H=(l;r ?f), line) ,MOSQPH =1, rand) , MOSQP
(H =r ?f, rand) , MOSQPH = (I; r ?f), rand) .

o MOSQebmpared againsNSGA-II (C version)and MOScalar
(weighted-sum, equidistant weights).

o We report numerical results via performance and data pro les.

o Performance pro les:Purity, SpreadGamma Metri¢ SpreadDelta
Metric, and Hypervolumemetric. (Small values better
performance.)

o Data pro les: how likely is an algorithm to solve a problemiygn a
computational budget.
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Metrics|and|performance|prolles
Performance metrics

o SpreadGamma Metric
For given solver and MOO problem, measures the largest gap in th
approximate Pareto front.
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Metrics|and|performance|prolles
Performance metrics

o SpreadGamma Metric
For given solver and MOO problem, measures the largest gap in th
approximate Pareto front.

@ SpreadDelta Metric
For given solver and MOO problem, measures the uniformity ofsgap
in the approximate Pareto front.

@ Hypervolume
For given solver and MOO problem, measures the volume of the
space enclosed by the nhondominated points and utopia point.

o Purity
For a given solver, a set of solvers, and a given MOO problem,
measures 1 / (percentage of points computed that are not doméetht
by points from other solvers).
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Metrics|and|performance|prolles
Performance pro les

o Performance pro les.
Represent in one gure, for each solverthe cumulative distribution

function ¢ for a given performance metric:
let P bet the set of problems considered angls performance metric
value of solvers on problemp. Then,

s()=jfp2P irps gjFPj:
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Metrics and performance pro les
Performance pro les
o Performance pro les.
Represent in one gure, for each solverthe cumulative distribution
function ¢ for a given performance metric:

let P bet the set of problems considered angls performance metric
value of solvers on problemp. Then,

s()=jfp2P irps gjFPj:

o Solvers withlargerlim ;1  ¢( ) are more robust. If ( ) =1 then
solvers solves all given problems.
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Metrics and performance pro les
Constrained test set (Hypervolume)

Average hypervolume performance profile for 10 runs (all problems)
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pictestandipcheinanesteiele
Constrained test set (Purity)

Purity performance profile with the best of 10 runs
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pictestandipcheinanesteiele
Constrained test set (Purity)

Purity performance profile (all bi-objective problems)
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Metrics and performance pro les
Constrained test set (Spread)

Average A performance profile for 10 runs
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Metrics and performance pro les
Constrained test set (Spread)

Average T performance profile for 10 runs
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Datajpoles
Data pro les

Indicate how likely an algorithm is to “solve' a problem, giv@me
computational budget.

Let Np:s be the number of function and gradient evaluations required for
solvers to solve problenp:

X + +
Npss = #f+nar e EDNE2) 4 o

I 1]
Np:s = Np:sit + Np:s;g+ Npisine
Consider the metric

ds( ) = jfp2P :Nps gj=Pj:
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Numerical results
Bound constrained test set

Data profile with the average of 10 runs (e=0.99)
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Numerical results
Constrained test set
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IO CIIETRERTICI  Numerical results { applications in Space Engineering

Space Engineering: Earth-Jupiter Mission

fi= V fuel use; and, = total travel time.

Cassini Pareto fronts, solvers best run
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Numerical results { applications in Space Engineering
Space Engineering: Rosetta bi-objective problem

fi= V fuel use; and, = total travel time.
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Conclusions

o We propose a method for constrained multi-objective optintiaa
based on SQP,NIOSQP).

@ Convergence proof establishes fast local convergence to Pameno.
@ Implementationof the proposed algorithm in MATLAB.

@ Numerical resultcon rm the solver competitiveness and robustness.

J. Fliege (RAMOO2016) MOSQP 24 June 2016 31/33



Literature, Data, Code

o All code, test problems, and results available at
http://www.norg.uminho.pt/aivaz/MOSQP/

J. Fliege (RAMOO2016) MOSQP 24 June 2016

32/33



Literature, Data, Code

o All code, test problems, and results available at
http://www.norg.uminho.pt/aivaz/MOSQP/

o J. Fliege and A. I. F. Vaz: A SQP type method for constrained

multiobjective optimization.SIAM Journal on Optimization
forthcoming. Available oroptimization-online.org

J. Fliege (RAMOO2016) MOSQP 24 June 2016

32/33



Literature, Data, Code

o All code, test problems, and results available at
http://www.norg.uminho.pt/aivaz/MOSQP/

o J. Fliege and A. I. F. Vaz: A SQP type method for constrained
multiobjective optimization.SIAM Journal on Optimization
forthcoming. Available oroptimization-online.org

@ J. Fliege, L. M. Grana Drummond, and B. F. Svaiter: Newton's
Method for Multiobjective Optimization.SIAM Journal Optimization
20(2), 602626.

J. Fliege (RAMOO2016) MOSQP 24 June 2016 32/33



Literature, Data, Code

o All code, test problems, and results available at
http://www.norg.uminho.pt/aivaz/MOSQP/

o J. Fliege and A. I. F. Vaz: A SQP type method for constrained
multiobjective optimization.SIAM Journal on Optimization
forthcoming. Available oroptimization-online.org

@ J. Fliege, L. M. Grana Drummond, and B. F. Svaiter: Newton's
Method for Multiobjective Optimization.SIAM Journal Optimization
20(2), 602626.

o A. L. Custodio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente:

Direct Multisearch for Multiobjective OptimizationSIAM Journal of
Optimization, 21(3), 11091140.

J. Fliege (RAMOO2016) MOSQP 24 June 2016 32/33



Thanks { Support

Thanks!

This work has been supported by
@ FCT - Fundao para a Cincia e Tecnologia within the Project Scope:

PEst-OE/EEI/UI0319/2014.

J. Fliege (RAMOO2016) MOSQP 24 June 2016 33/33



Thanks { Support

Thanks!

This work has been supported by
@ FCT - Fundao para a Cincia e Tecnologia within the Project Scope:

PEst-OE/EEI/U10319/2014.
e European Space Agency, ESTEC: European Space Research and
Technology Centre.

J. Fliege (RAMOO2016) MOSQP 24 June 2016 33/33



	Introduction
	The algorithm
	Main lines
	An illustration
	Some details

	Implementation
	Implementation

	Numerical results
	Test set and solvers
	Metrics and performance profiles
	Data profiles
	Numerical results
	Numerical results – applications in Space Engineering


