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Introduction

Multiobjective constrained optimization

Constrained multiobjective optimization problem

min
x2 


f (x) = ( f 1(x); : : : ; f m (x))T

with


 = f x 2 [`; u] � Rn : gj (x) � 0; j = 1 ; : : : ; p; hl (x) = 0 ; l = 1 ; : : : ; qg

` 2 (R [ f�1g )n , u 2 (R [ f + 1g )n ;

All objective functions are at leastC2;

All constraint functions are at leastC1;

We also allowunconstrainedor box-constrained optimization (p; q = 0
and/or ` = f�1g n ; u = f1g n ).
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The algorithm Main lines

Algorithm main lines

Doesnot aggregateany of the objective functions

UsesSQPbased techniques for MOO

Keeps a list ofnondominatedpoints

Constraintsviolationsare considered as additional objectives in the
linesearch steps.

Tries to capture thewhole Pareto frontfrom two algorithmic stages:
search and re�ning
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The algorithm An illustration

Algorithm illustrated - setup
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The algorithm An illustration

Algorithm illustrated - spread
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The algorithm An illustration

Algorithm illustrated - re�ning
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The algorithm Some details

Search direction computation

For eachxk in the list of nondominated points:

Spread (i = 1 ; : : : ; m)

di 2 arg min
d2 Rn

r f i (xk )T d +
1
2

dT H i d

s.t. gj (xk ) + r gj (xk)T d � 0; j = 1 ; : : : ; p

hl (xk ) + r hl (xk)T d = 0 ; l = 1 ; : : : ; q

` � xk + d � u

whereH i is a positive de�nite matrix.

di is a descent direction forf i .

Linesearch: testxk + �d i (� = 2 t , t = 0 ; 1; 2; : : :) for being nondominated.
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The algorithm Some details

Search direction computation

For eachxk in the list of nondominated points:

Re�ning

min
x2 Rn

mX

i =1

f i (x)

s.t. f i (x) � f i (xk ); i = 1 ; : : : ; m

gj (x) � 0; j = 1 ; : : : ; p

hl (x) = 0 ; l = 1 ; : : : ; q

Iterations of an SQP-type method for this problem are carried out, using
xk as a starting point.
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The algorithm Some details

Some theoretical considerations

From spread stagewe obtain new points.

The spread stageperforms a �nite number of iterations. (No
asymptotics here!)

The re�ning stagedrives all the available nondominated points to
Pareto criticality,

by obtaining a new point thatdecreasesor maintainsall the objective
function values.

(Local) Paretocriticality can be veri�ed based on the re�ning
single-objective optimization problem.

Convergence theoryavailable for the proposed algorithm.
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Implementation Implementation

Implementation

Implemented in MATLAB (fast prototyping, high performance)

(Single-objective)subproblemsare solved byquadprog and fmincon
MATLAB solvers

Maximum of 20 iterations on the spread stage

We consider three possibilities for theH i matrix:
H i = I m in both stages

H i = ( r 2f i (xk ) + E i ) in both stages (E i p.d. matrix)

H i = I m in the spread stage andH i = ( r 2f i (xk ) + E i ) in the re�ning
stage

Two (list) initialization strategies are implemented:
line { a line between` and u (x i = ` + i u� `

2n S
, i = 1 ; : : : ; 2nS).

rand { a uniform (`; u) random distribution.
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Numerical results Test set and solvers

Academic test set

Problems from the academic literature.

Problems have beencodedin AMPL (and a MATLAB-AMPL
interface was used). Exact derivatives are provided by AMPL.

67 bound constrained test problems(50 problems withm = 2 , 17
problems withm = 3), n varying between 2 and 30.

21 constrained test problems(12 problems withm = 2 , 9 problems
with m = 3), 7 with nonlinear constraints, 9 with linear constraints,
and 5 with both,n varying between 2 and 20.
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Numerical results Test set and solvers

Solvers

We considersix implementationsof the MOSQPsolver: MOSQP
( H = I , line) , MOSQP (H = r 2f , line) , MOSQP
( H = ( I; r 2f ), line) , MOSQP (H = I , rand) , MOSQP
( H = r 2f , rand) , MOSQP (H = ( I; r 2f ), rand) .

MOSQPcompared againstNSGA-II (C version)and MOScalar
(weighted-sum, equidistant weights).

We report numerical results via performance and data pro�les.

Performance pro�les:Purity, Spread-Gamma Metric, Spread-Delta
Metric, and Hypervolumemetric. (Small values$ better
performance.)

Data pro�les: how likely is an algorithm to solve a problem, given a
computational budget.
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Numerical results Metrics and performance pro�les

Performance metrics

Spread-Gamma Metric
For given solver and MOO problem, measures the largest gap in the
approximate Pareto front.

Spread-Delta Metric
For given solver and MOO problem, measures the uniformity of gaps
in the approximate Pareto front.

Hypervolume
For given solver and MOO problem, measures the volume of the
space enclosed by the nondominated points and utopia point.

Purity
For a given solver, a set of solvers, and a given MOO problem,
measures 1 / (percentage of points computed that are not dominated
by points from other solvers).
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Numerical results Metrics and performance pro�les

Performance pro�les

Performance pro�les.
Represent in one �gure, for each solvers, the cumulative distribution
function � s for a given performance metric:
let P bet the set of problems considered andrp;s performance metric
value of solvers on problemp. Then,

� s(� ) := jf p 2 P : rp;s � � gj=jPj :

Solvers withlarger lim � !1 � s(� ) are more robust. If� s(� ) = 1 then
solvers solves all given problems.
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Numerical results Metrics and performance pro�les

Constrained test set (Hypervolume)
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Constrained test set (Purity)

Purity Metric
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Constrained test set (Purity)
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Constrained test set (Spread)

Delta Metric (uniformity of gaps in the Pareto front)
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Constrained test set (Spread)
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Numerical results Data pro�les

Data pro�les

Indicate how likely an algorithm is to `solve' a problem, givensome
computational budget.

Let Np;s be the number of function and gradient evaluations required for
solvers to solve problemp:

Np;s;f :=
X

i

�
# f i + n# r f i +

(n + 1)( n + 2)
2

# r 2f i

�
;

Np;s := Np;s;f + Np;s;g + Np;s;h:

Consider the metric

ds(� ) = jf p 2 P : Np;s � � gj=jPj :
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Bound constrained test set
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Numerical results Numerical results { applications in Space Engineering

Space Engineering: Earth-Jupiter Mission

f 1 = � V� fuel use; andf 2 = total travel time.
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Numerical results Numerical results { applications in Space Engineering

Space Engineering: Rosetta bi-objective problem

f 1 = � V� fuel use; andf 2 = total travel time.
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Conclusions

We propose a method for constrained multi-objective optimization
based on SQP, (MOSQP).

Convergence proof establishes fast local convergence to Paretofront.

Implementationof the proposed algorithm in MATLAB.

Numerical resultscon�rm the solver competitiveness and robustness.
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