SET-BASED MINMAX ROBUST EFFICIENCY FOR UNCERTAIN MULTI-OBJECTIVE OPTIMIZATION

Jonas Ide

joint work with
Matthias Ehrgott and Anita Schöbel

University of Göttingen

September 12, 2014
at the Workshop on Recent Advances in Multi-Objective Optimization, Vienna
Introduction
Multi-objective optimization
Robust optimization
Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions
Weighted sum scalarization
ϵ-constraint-method
Approach via the objective-wise worst case
Examples of minmax robust efficient sets

Conclusion & Outlook
Introduction

- Multi-objective optimization
- Robust optimization
- Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions

- Weighted sum scalarization
- ϵ-constraint-method
- Approach via the objective-wise worst case
- Examples of minmax robust efficient sets

Conclusion & Outlook
Introduction

Multi-objective optimization
Robust optimization
Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions
Weighted sum scalarization
\(\varepsilon \)-constraint-method
Approach via the objective-wise worst case
Examples of minmax robust efficient sets

Conclusion & Outlook
Definition (Multi-objective optimization problem)

Given a feasible set $\mathcal{X} \subset \mathbb{R}^n$ and a function $f : \mathbb{R}^n \to \mathbb{R}^k$, a multi-objective optimization problem is given by

$$
\min \ f(x) \\
\text{s.t.} \quad x \in \mathcal{X}
$$

In multi-objective optimization one searches for the set of *nondominated* points $f(\overline{x})$ with $\overline{x} \in \mathcal{X}$, i.e., where there is no $x' \in \mathcal{X} \setminus \{\overline{x}\}$ such that $f_i(x') \leq f_i(\overline{x})$ for all $i = 1, \ldots, k$.

The according solution \overline{x} is called *efficient*.

\[\text{Diagram: Multi-objective optimization problem graph} \]
Definition (Multi-objective optimization problem)

Given a feasible set $\mathcal{X} \subset \mathbb{R}^n$ and a function $f : \mathbb{R}^n \rightarrow \mathbb{R}^k$, a multi-objective optimization problem is given by

$$\min \ f(\mathbf{x})$$
$$s.t. \ \mathbf{x} \in \mathcal{X}$$

In multi-objective optimization one searches for the set of *nondominated* points $f(\mathbf{x})$ with $\mathbf{x} \in \mathcal{X}$, i.e., where there is no $x' \in \mathcal{X} \setminus \{\mathbf{x}\}$ such that $f_i(x') \leq f_i(\mathbf{x})$ for all $i = 1, \ldots, k$. The according solution \mathbf{x} is called *efficient*.
Introduction

Multi-objective optimization

Robust optimization

Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions

Weighted sum scalarization

ϵ-constraint-method

Approach via the objective-wise worst case

Examples of minmax robust efficient sets

Conclusion & Outlook
Uncertainties

- In application of mathematical optimization input data often uncertain or not (entirely) known beforehand
Uncertainties

- In application of mathematical optimization input data often uncertain or not (entirely) known beforehand
- Uncertainties can often be described by a set of possible scenarios \mathcal{U}
Uncertainties

- In application of mathematical optimization input data often uncertain or not (entirely) known beforehand
- Uncertainties can often be described by a set of possible scenarios \(\mathcal{U} \)

Definition (Uncertain (single objective) optimization problem)

Given: uncertainty set \(\mathcal{U} \), feasible set \(\mathcal{X} \subset \mathbb{R}^n \), objective function \(f : \mathbb{R}^n \times \mathcal{U} \rightarrow \mathbb{R} \).
Uncertainties

- In application of mathematical optimization input data often uncertain or not (entirely) known beforehand
- Uncertainties can often be described by a set of possible scenarios \mathcal{U}

Definition (Uncertain (single objective) optimization problem)

Given: uncertainty set \mathcal{U}, feasible set $\mathcal{X} \subseteq \mathbb{R}^n$, objective function $f : \mathbb{R}^n \times \mathcal{U} \to \mathbb{R}$.

Uncertain optimization problem $\mathcal{P}(\mathcal{U})$: Family of (deterministic) optimization problems

$$\mathcal{P}(\xi) \quad \min_{\mathcal{X}} \quad f(x, \xi)$$
$$\text{s.t.} \quad x \in \mathcal{X},$$

where $\xi \in \mathcal{U}$.
The question arises:

When to call a solution to this family of optimization problems \textit{robust optimal}?
The question arises:
When to call a solution to this family of optimization problems *robust optimal*?

Different concepts of robustness for single objective optimization problems
The question arises:
When to call a solution to this family of optimization problems \textit{robust optimal}?

Different concepts of robustness for single objective optimization problems

\begin{itemize}
 \item Minmax robustness (Soyster, 1973, Ben-Tal & Nemirovski, 1998):
 \[
 \min_{x \in \mathcal{X}} \sup_{\xi \in \mathcal{U}} f(x, \xi)
 \]
\end{itemize}
The question arises:
When to call a solution to this family of optimization problems robust optimal?

Different concepts of robustness for single objective optimization problems

 \[\min_{x \in X} \sup_{\xi \in U} f(x, \xi) \]

- many more (e.g., Ben-Tal et al., 2009, Goerigk & Schöbel, 2013)
Introduction
Multi-objective optimization
Robust optimization
Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions
Weighted sum scalarization
ϵ-constraint-method
Approach via the objective-wise worst case
Examples of minmax robust efficient sets

Conclusion & Outlook
Robust Optimization
Both robust and multi-objective optimization important in research and real-world applications

Connection of these two topics quite new (e.g., Kuroiwa & Lee, 2012; Witting, 2012)

Some other works available as pre-prints (e.g., Doolittle et al., 2012; Kuhn et al., 2012)
Both robust and multi-objective optimization important in research and real-world applications
Both robust and multi-objective optimization important in research and real-world applications
Both robust and multi-objective optimization important in research and real-world applications

Connection of these two topics quite new (e.g., Kuroiwa & Lee, 2012; Witting, 2012)

Some other works available as pre-prints (e.g., Doolittle et al., 2012; Kuhn et al., 2012)
Definition (Uncertain multi-objective problem)

Given an uncertainty set \(\mathcal{U} \), a feasible set \(\mathcal{X} \subset \mathbb{R}^n \) and a function \(f : \mathbb{R}^n \times \mathcal{U} \rightarrow \mathbb{R}^k \), an uncertain multi-objective problem \(\mathcal{P}(\mathcal{U}) \) is given by the family of all problems

\[
\mathcal{P}(\xi) \quad \min_{x} \ f(x, \xi) \\
\text{s.t.} \quad x \in \mathcal{X}
\]

with \(\xi \in \mathcal{U} \).
Definition (Uncertain multi-objective problem)

Given an uncertainty set U, a feasible set $X \subset \mathbb{R}^n$ and a function $f : \mathbb{R}^n \times U \rightarrow \mathbb{R}^k$, an uncertain multi-objective problem $P(U)$ is given by the family of all problems

$$
P(\xi) \quad \min \quad f(x, \xi) \\
\text{s.t.} \quad x \in X
$$

with $\xi \in U$.

The question arises

When do we call a solution $x \in X$ robust efficient?
Introduction

- Multi-objective optimization
- Robust optimization
- Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions

- Weighted sum scalarization
- ϵ-constraint-method
- Approach via the objective-wise worst case
- Examples of minmax robust efficient sets

Conclusion & Outlook
Hedging against a *worst case*
Hedging against a worst case

What is a worst case for the uncertain multi-objective problem \(\mathcal{P}(\mathcal{U}) \) given by

\[
\begin{align*}
\mathcal{P}(\xi) & \min f(x, \xi) \\
\text{s.t.} & \quad x \in \mathcal{X}
\end{align*}
\]

with \(\xi \in \mathcal{U} \)?
Hedging against a worst case

What is a worst case for the uncertain multi-objective problem $\mathcal{P}(\mathcal{U})$ given by

$$\mathcal{P}(\xi) \quad \min_{\xi \in \mathcal{U}} \quad \sup_{x, \xi} \quad f(x, \xi)$$

s.t. $x \in \mathcal{X}$

with $\xi \in \mathcal{U}$?
Interpreting the supremum as a set

Which of these solutions do we call minmax robust efficient?
Interpreting the supremum as a set

\[
\sup_{\xi \in \mathcal{U}} f(x_1, \mathcal{U})
\]
\[
\sup_{\xi \in \mathcal{U}} f(x_2, \mathcal{U})
\]
\[
\sup_{\xi \in \mathcal{U}} f(x_3, \mathcal{U})
\]
\[
\sup_{\xi \in \mathcal{U}} f(x_4, \mathcal{U})
\]
\[
\sup_{\xi \in \mathcal{U}} f(x_5, \mathcal{U})
\]

Which of these solutions do we call minmax robust efficient?
Interpreting the supremum as a set

We will call those $x \in X$ minmax robust efficient, where $f(x, \mathcal{U})$ is nondominated.
Definition (Robust efficiency)

Given an uncertain multi-objective problem \(P(U) \) we call a solution \(\bar{x} \in X \) minmax robust efficient,

if there is no \(x' \in X \setminus \{\bar{x}\} \) such that

\[
f(x', U) \subseteq f(\bar{x}, U) - \mathbb{R}^k_\geq
\]
Definition (Robust efficiency)

Given an uncertain multi-objective problem $\mathcal{P}(U)$ we call a solution $\bar{x} \in \mathcal{X}$ minmax robust strictly efficient,

if there is no $x' \in \mathcal{X} \setminus \{\bar{x}\}$ such that

$$f(x', U) \subseteq f(\bar{x}, U) - \mathbb{R}_{\geq}^k$$
Definition (Robust efficiency)

Given an uncertain multi-objective problem $P(U)$ we call a solution $\bar{x} \in \mathcal{X}$ minmax robust weakly efficient, if there is no $x' \in \mathcal{X} \setminus \{\bar{x}\}$ such that

$$f(x', U) \subseteq f(\bar{x}, U) - \mathbb{R}_+^k$$
Interpreting the supremum as a set

The orange, blue, green and purple solutions are minmax robust strictly efficient, the red one is not even minmax robust weakly efficient.
Properties

For $|U| = 1$ these minmax robust efficiency definitions reduce to the definition of efficiency.

For $k = 1$ the definition of minmax robust weakly efficiency reduces to the definition of minmax robust optimality.

Question

How to calculate robust efficient solutions?

First idea: Find solutions by solving a robust single-objective problem

Second idea: Find solutions by solving a deterministic multi-objective problem
Properties

- For $|\mathcal{U}| = 1$ these minmax robust efficiency definitions reduce to the definition of efficiency
Properties

- For $|\mathcal{U}| = 1$ these minmax robust efficiency definitions reduce to the definition of efficiency.
- For $k = 1$ the definition of minmax robust weakly efficiency reduces to the definition of minmax robust optimality.
Properties

▶ For $|\mathcal{U}| = 1$ these minmax robust efficiency definitions reduce to the definition of efficiency
▶ For $k = 1$ the definition of minmax robust weakly efficiency reduces to the definition of minmax robust optimality

Question
Properties

- For $|\mathcal{U}| = 1$ these minmax robust efficiency definitions reduce to the definition of efficiency
- For $k = 1$ the definition of minmax robust weakly efficiency reduces to the definition of minmax robust optimality

Question

- How to calculate robust efficient solutions?
Properties

- For $|\mathcal{U}| = 1$ these minmax robust efficiency definitions reduce to the definition of efficiency
- For $k = 1$ the definition of minmax robust weakly efficiency reduces to the definition of minmax robust optimality

Question

- How to calculate robust efficient solutions?
 - First idea: Find solutions by solving a robust single-objective problem
Properties

- For $|\mathcal{U}| = 1$ these minmax robust efficiency definitions reduce to the definition of efficiency.
- For $k = 1$ the definition of minmax robust weakly efficiency reduces to the definition of minmax robust optimality.

Question

- How to calculate robust efficient solutions?
 - First idea: Find solutions by solving a robust single-objective problem.
 - Second idea: Find solutions by solving a deterministic multi-objective problem.
Introduction
Multi-objective optimization
Robust optimization
Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions
Weighted sum scalarization
ϵ-constraint-method
Approach via the objective-wise worst case
Examples of minmax robust efficient sets

Conclusion & Outlook
Introduction

- Multi-objective optimization
- Robust optimization
- Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions

- Weighted sum scalarization
- ϵ-constraint-method
- Approach via the objective-wise worst case
- Examples of minmax robust efficient sets

Conclusion & Outlook
Theorem

If $\bar{x} \in \mathcal{X}$ is the unique minimizer of

$$\sup_{\xi \in \mathcal{U}} \sum_{i=1}^{k} \lambda_i f_i(x, \xi)$$

over \mathcal{X} for some $\lambda \in \mathbb{R}^k_>$, \bar{x} is minmax robust strictly efficient.
The purple solution is minmax robust strictly efficient.
The orange solution is minmax robust strictly efficient.
The blue solution is minmax robust strictly efficient.
The green minmax robust strictly efficient solution is no optimal solution for any scalarization problem.
Theorem

If $\bar{x} \in \mathcal{X}$ is the unique minimizer of

$$\sup_{\xi \in \mathcal{U}} \sum_{i=1}^{k} \lambda_i f_i(x, \xi)$$

over \mathcal{X} for some $\lambda \in \mathbb{R}^k_\leq$, \bar{x} is minmax robust strictly efficient.

Theorem

If $\max_{\xi \in \mathcal{U}} \sum_{i=1}^{k} \lambda_i f_i(x, \xi)$ exists for all $x \in \mathcal{X}$ and $\bar{x} \in \mathcal{X}$ is a minimizer of

$$\max_{\xi \in \mathcal{U}} \sum_{i=1}^{k} \lambda_i f_i(x, \xi)$$

over \mathcal{X} for some $\lambda \in \mathbb{R}^k_\leq$, then \bar{x} is minmax robust weakly efficient.
Introduction

Multi-objective optimization
Robust optimization
Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions

Weighted sum scalarization
\(\varepsilon\)-constraint-method

Approach via the objective-wise worst case
Examples of minmax robust efficient sets

Conclusion & Outlook
Definition

\[\epsilon C_P(U)(\epsilon, i) = \min_{x \in X} \sup_{\xi \in U} f_i(x, \xi) \]
\[\text{s.t. } f_j(x, \xi) \leq \epsilon_j \quad \forall j \neq i, \forall \xi \in U \]

Theorem

- a) If \(x \in X \) is the unique optimal solution to \(\epsilon C_P(U)(\epsilon, i) \) for some \(i \), then it is minmax robust strictly efficient.

- b) If \(x \in X \) is an optimal solution to \(\epsilon C_P(U)(\epsilon, i) \) for some \(i \) and \(\max_{\xi \in U} f_i(x, \xi) \) exists for all \(x \in X \), then \(x \) is minmax robust weakly efficient.
Definition

\[\epsilon C_{\mathcal{P}(U)}(\epsilon, i) \leq \min \sup_{\xi \in U} f_i(x, \xi) \]
\[\text{s.t. } f_j(x, \xi) \leq \epsilon_j \quad \forall j \neq i, \forall \xi \in U \]
\[x \in X \]

Theorem

Given a problem \(\mathcal{P}(U) \).

a) If \(\bar{x} \in X \) is the unique optimal solution to \(\epsilon C_{\mathcal{P}(U)}(\epsilon, i) \) for some \(i \), then it is minmax robust strictly efficient.
Definition

\[\epsilon C_P(U)(\epsilon, i) \quad \min_{\xi \in U} \sup_{x \in X} f_i(x, \xi) \]

s.t. \[f_j(x, \xi) \leq \epsilon_j \quad \forall j \neq i, \forall \xi \in U \]

Theorem

Given a problem \(P(U) \).

a) If \(\overline{x} \in X \) is the unique optimal solution to \(\epsilon C_P(U)(\epsilon, i) \) for some \(i \), then it is minmax robust strictly efficient.

b) If \(\overline{x} \in X \) is an optimal solution to \(\epsilon C_P(U)(\epsilon, i) \) for some \(i \) and \[\max_{\xi \in U} f_i(x, \xi) \] exists for all \(x \in X \), then \(\overline{x} \) is minmax robust weakly efficient.
The green solution minimizes \(f_2(x, \xi) \) over \(\{ x \in \mathcal{X} : f_1(x, \xi) \leq 4.5 \ \forall \xi \in \mathcal{U} \} \),
the purple solution minimizes \(f_2(x, \xi) \) over \(\{ x \in \mathcal{X} : f_1(x, \xi) \leq 1 \ \forall \xi \in \mathcal{U} \} \),
The blue solution minimizes $f_1(x, \xi)$ over $\{x \in \mathcal{X} : f_2(x, \xi) \leq 2.5 \ \forall \xi \in \mathcal{U}\}$.

The orange solution cannot be found with the ϵ-constraint method.
Introduction
 Multi-objective optimization
 Robust optimization
 Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions
 Weighted sum scalarization
 \(\epsilon \)-constraint-method
 Approach via the objective-wise worst case
 Examples of minmax robust efficient sets

Conclusion & Outlook
Definition
We formulate a new problem

\[\text{OWC} \min_{x \in X} f^{owc}_U(x) \]

where

\[f^{owc}_U(x) := \begin{pmatrix} \sup_{\xi \in U} f_1(x, \xi) \\ \sup_{\xi \in U} f_2(x, \xi) \\ \vdots \\ \sup_{\xi \in U} f_k(x, \xi) \end{pmatrix} \]
The strictly efficient solutions of \((\text{OWC})\) are the purple, green and blue solutions. The orange solution cannot be found this way.
Definition

We formulate a new problem

\[
\text{OWC } \min_{x \in X} f_{\mathcal{U}}^{\text{OWC}}(x)
\]

where

\[
f_{\mathcal{U}}^{\text{OWC}}(x) := \left(\begin{array}{c}
\sup_{\xi \in \mathcal{U}} f_1(x, \xi) \\
\sup_{\xi \in \mathcal{U}} f_2(x, \xi) \\
\vdots \\
\sup_{\xi \in \mathcal{U}} f_k(x, \xi)
\end{array} \right)
\]

Theorem

(1) If \(\bar{x} \in X \) is a strictly efficient solution for \((\text{OWC}) \), then it is minmax robust strictly efficient for \(\mathcal{P}({\mathcal{U}}) \).
Definition

We formulate a new problem

\[\min_{x \in X} f^{\text{owc}}_U(x) \]

where

\[f^{\text{owc}}_U(x) := \begin{pmatrix}
\sup_{\xi \in U} f_1(x, \xi) \\
\sup_{\xi \in U} f_2(x, \xi) \\
\vdots \\
\sup_{\xi \in U} f_k(x, \xi)
\end{pmatrix} \]

Theorem

(1) If \(\bar{x} \in X \) is a strictly efficient solution for \((\text{OWC})\), then it is minmax robust strictly efficient for \(\mathcal{P}(U) \).

(2) If \(\max_{\xi \in U} f_i(x, \xi) \) exists for all \(i = 1, \ldots, k \) and \(x \in X \) and \(\bar{x} \) is weakly efficient for \((\text{OWC})\), it is minmax robust weakly efficient for \(\mathcal{P}(U) \).
The strictly efficient solutions of (\mathcal{OWC}) are the purple, green and blue solutions. The orange solution cannot be found this way.
Introduction
- Multi-objective optimization
- Robust optimization
- Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions
- Weighted sum scalarization
- \(\varepsilon \)-constraint-method
- Approach via the objective-wise worst case

Examples of minmax robust efficient sets

Conclusion & Outlook
ϵ-constraint method

Approximation of the minmax robust efficient set of the ϵ-constraint method
(left to right: $\epsilon = 1$, 0.5, 0.1)
weighted sum and ϵ-constraint scalarization

Minmax robust efficient solutions obtained by weighted sum (black) and ϵ-constraint (grey) scalarization (left linear, right quadratic)
\(\varepsilon\)-constraint method

(a) Non-dominated set (black) and objective vectors of the robust efficient solutions (grey) in the nominal scenario.

(b) Objective vectors of the nominal (black) and the robust (grey) efficient solutions in the respective worst cases.

(c) Objective vectors of the nominally efficient solutions under all scenarios.

(d) Objective vectors of the robust efficient solutions under all scenarios.
Introduction
Multi-objective optimization
Robust optimization
Robust multi-objective optimization

Set based minmax robust efficiency

Calculating minmax robust efficient solutions
Weighted sum scalarization
ϵ-constraint-method
Approach via the objective-wise worst case
Examples of minmax robust efficient sets

Conclusion & Outlook
Summary
Summary

- Introduced (set-based) minmax robust efficiency
Summary

- Introduced (set-based) minmax robust efficiency
- Presented algorithms for calculating minmax robust efficient solutions
Summary

- Introduced (set-based) minmax robust efficiency
- Presented algorithms for calculating minmax robust efficient solutions
- Investigated differences between the scalarization techniques
Summary

- Introduced (set-based) minmax robust efficiency
- Presented algorithms for calculating minmax robust efficient solutions
- Investigated differences between the scalarization techniques

Further research
Summary

▶ Introduced (set-based) minmax robust efficiency
▶ Presented algorithms for calculating minmax robust efficient solutions
▶ Investigated differences between the scalarization techniques

Further research

▶ Investigated connection to set-valued optimization

Thank you for your attention!
Summary

▶ Introduced (set-based) minmax robust efficiency
▶ Presented algorithms for calculating minmax robust efficient solutions
▶ Investigated differences between the scalarization techniques

Further research

▶ Investigated connection to set-valued optimization
▶ Applied minmax robust efficiency in practice

Thank you for your attention!
Summary

▶ Introduced (set-based) minmax robust efficiency
▶ Presented algorithms for calculating minmax robust efficient solutions
▶ Investigated differences between the scalarization techniques

Further research

▶ Investigated connection to set-valued optimization
▶ Applied minmax robust efficiency in practice

Future work
Summary

- Introduced (set-based) minmax robust efficiency
- Presented algorithms for calculating minmax robust efficient solutions
- Investigated differences between the scalarization techniques

Further research

- Investigated connection to set-valued optimization
- Applied minmax robust efficiency in practice

Future work

- Evaluate practical value
Summary

- Introduced (set-based) minmax robust efficiency
- Presented algorithms for calculating minmax robust efficient solutions
- Investigated differences between the scalarization techniques

Further research

- Investigated connection to set-valued optimization
- Applied minmax robust efficiency in practice

Future work

- Evaluate practical value
- Other solution techniques?
Summary

- Introduced (set-based) minmax robust efficiency
- Presented algorithms for calculating minmax robust efficient solutions
- Investigated differences between the scalarization techniques

Further research

- Investigated connection to set-valued optimization
- Applied minmax robust efficiency in practice

Future work

- Evaluate practical value
- Other solution techniques?

Thank you for your attention!